26,563 research outputs found

    100 MHz Amplitude and Polarization Modulated Optical Source for Free-Space Quantum Key Distribution at 850 nm

    Full text link
    We report on an integrated photonic transmitter of up to 100 MHz repetition rate, which emits pulses centered at 850 nm with arbitrary amplitude and polarization. The source is suitable for free space quantum key distribution applications. The whole transmitter, with the optical and electronic components integrated, has reduced size and power consumption. In addition, the optoelectronic components forming the transmitter can be space-qualified, making it suitable for satellite and future space missions.Comment: 6 figures, 2 table

    Instability of toroidal magnetic field in jets and plerions

    Get PDF
    Jets and pulsar-fed supernova remnants (plerions) tend to develop highly organized toroidal magnetic field. Such a field structure could explain the polarization properties of some jets, and contribute to their lateral confinement. A toroidal field geometry is also central to models for the Crab Nebula - the archetypal plerion - and leads to the deduction that the Crab pulsar's wind must have a weak magnetic field. Yet this `Z-pinch' field configuration is well known to be locally unstable, even when the magnetic field is weak and/or boundary conditions slow or suppress global modes. Thus, the magnetic field structures imputed to the interiors of jets and plerions are unlikely to persist. To demonstrate this, I present a local analysis of Z-pinch instabilities for relativistic fluids in the ideal MHD limit. Kink instabilities dominate, destroying the concentric field structure and probably driving the system toward a more chaotic state in which the mean field strength is independent of radius (and in which resistive dissipation of the field may be enhanced). I estimate the timescales over which the field structure is likely to be rearranged and relate these to distances along relativistic jets and radii from the central pulsar in a plerion. I conclude that a concentric toroidal field is unlikely to exist well outside the Crab pulsar's wind termination shock. There is thus no dynamical reason to conclude that the magnetic energy flux carried by the pulsar wind is much weaker than the kinetic energy flux. Abandoning this inference would resolve a long-standing puzzle in pulsar wind theory.Comment: 28 pages, plain TeX. Accepted for publication in Ap

    Spatially generalizable representations of facial expressions: Decoding across partial face samples

    Get PDF
    A network of cortical and sub-cortical regions is known to be important in the processing of facial expression. However, to date no study has investigated whether representations of facial expressions present in this network permit generalization across independent samples of face information (e.g. eye region Vs mouth region). We presented participants with partial face samples of five expression categories in a rapid event-related fMRI experiment. We reveal a network of face sensitive regions that contain information about facial expression categories regardless of which part of the face is presented. We further reveal that the neural information present in a subset of these regions: dorsal prefrontal cortex (dPFC), superior temporal sulcus (STS), lateral occipital and ventral temporal cortex, and even early visual cortex, enables reliable generalization across independent visual inputs (faces depicting the 'eyes only' versus 'eyes removed'). Furthermore, classification performance was correlated to behavioral performance in STS and dPFC. Our results demonstrate that both higher (e.g. STS, dPFC) and lower level cortical regions contain information useful for facial expression decoding that go beyond the visual information presented, and implicate a key role for contextual mechanisms such as cortical feedback in facial expression perception under challenging conditions of visual occlusion

    Nematic-Isotropic Transition with Quenched Disorder

    Full text link
    Nematic elastomers do not show the discontinuous, first-order, phase transition that the Landau-De Gennes mean field theory predicts for a quadrupolar ordering in 3D. We attribute this behavior to the presence of network crosslinks, which act as sources of quenched orientational disorder. We show that the addition of weak random anisotropy results in a singular renormalization of the Landau-De Gennes expression, adding an energy term proportional to the inverse quartic power of order parameter Q. This reduces the first-order discontinuity in Q. For sufficiently high disorder strength the jump disappears altogether and the phase transition becomes continuous, in some ways resembling the supercritical transitions in external field.Comment: 12 pages, 4 figures, to be published on PR

    Multiple mechanisms of consciousness: the neural correlates of emotional awareness.

    Get PDF
    Emotional stimuli, including facial expressions, are thought to gain rapid and privileged access to processing resources in the brain. Despite this access, we are conscious of only a fraction of the myriad of emotion-related cues we face everyday. It remains unclear, therefore, what the relationship is between activity in neural regions associated with emotional representation and the phenomenological experience of emotional awareness. We used functional magnetic resonance imaging and binocular rivalry to delineate the neural correlates of awareness of conflicting emotional expressions in humans. Behaviorally, fearful faces were significantly more likely to be perceived than disgusted or neutral faces. Functionally, increased activity was observed in regions associated with facial expression processing, including the amygdala and fusiform gyrus during emotional awareness. In contrast, awareness of neutral faces and suppression of fearful faces were associated with increased activity in dorsolateral prefrontal and inferior parietal cortices. The amygdala showed increased functional connectivity with ventral visual system regions during fear awareness and increased connectivity with perigenual prefrontal cortex (pgPFC; Brodmann\u27s area 32/10) when fear was suppressed. Despite being prioritized for awareness, emotional items were associated with reduced activity in areas considered critical for consciousness. Contributions to consciousness from bottom-up and top-down neural regions may be additive, such that increased activity in specialized regions within the extended ventral visual system may reduce demands on a frontoparietal system important for awareness. The possibility is raised that interactions between pgPFC and the amygdala, previously implicated in extinction, may also influence whether or not an emotional stimulus is accessible to consciousness

    Exact soliton solutions, shape changing collisions and partially coherent solitons in coupled nonlinear Schroedinger equations

    Full text link
    We present the exact bright one-soliton and two-soliton solutions of the integrable three coupled nonlinear Schroedinger equations (3-CNLS) by using the Hirota method, and then obtain them for the general NN-coupled nonlinear Schroedinger equations (N-CNLS). It is pointed out that the underlying solitons undergo inelastic (shape changing) collisions due to intensity redistribution among the modes. We also analyse the various possibilities and conditions for such collisions to occur. Further, we report the significant fact that the various partial coherent solitons (PCS) discussed in the literature are special cases of the higher order bright soliton solutions of the N-CNLS equations.Comment: 4 pages, RevTex, 1 EPS figure To appear in Physical Review Letter

    A Charge and Spin Readout Scheme For Single Self-Assembled Quantum Dots

    Full text link
    We propose an all optical spin initialization and readout concept for single self assembled quantum dots and demonstrate its feasibility. Our approach is based on a gateable single dot photodiode structure that can be switched between charge and readout mode. After optical electron generation and storage, we propose to employ a spin-conditional absorption of a circularly polarized light pulse tuned to the single negatively charged exciton transition to convert the spin information of the resident electron to charge occupancy. Switching the device to the charge readout mode then allows us to probe the charge state of the quantum dot (1e, 2e) using non-resonant luminescence. The spin orientation of the resident electron is then reflected by the photoluminescence yield of doubly and singly charged transitions in the quantum dot. To verify the feasibility of this spin readout concept, we have applied time gated photoluminescence to confirm that selective optical charging and efficient non perturbative measurement of the charge state can be performed on the same dot. The results show that, by switching the electric field in the vicinity of the quantum dot, the charging rate can be switched between a regime of efficient electron generation and a readout regime, where the charge occupancy and, therefore, the spin state of the dot can be tested via PL over millisecond timescales, without altering it.Comment: 20 Pages, 6 Figures, submitted to Phys. Rev.

    Ecología de Dickinsonia en llanuras mareales

    Get PDF
    Specimens of Dickinsonia from the Central Urals are characterised by clear bilateral symmetry. Taking into account observations from Australian specimens, we consider that the so called ‘glide reflection symmetry’ in these fossils is a taphonomic phenomenon. The size frequency distribution plot shows the predominance of smaller individuals in the studied population of Dickinsonia from the Central Urals. Assuming that the age of an individual is manifested in the body size, there is a significant predominance of juvenile individuals in the population. Three possible scenarios can be envisaged: (i) the population has a large number of juvenile individuals as the result of high survivorship rate in the intertidal zone; (ii) the population teems with juvenile forms because it is buried immediately after hatching; (iii) assuming that Dickinsonia was an actively motile organisms, that abundance of juvenile individuals could be explained by their inability to escape burial (although it is difficult to imagine that some of the mature individuals are buried with signs of escape behaviour); and (iv) the population could be interpreted as a fossilised ‘nesting ground’ for Dickinsonia in the intertidal zone where juvenile forms underwent maturation before migrating back to the subtidal zone. The study population can be characterised as expanding or stable; therefore, the intertidal setting can be described as favourable for these organisms.Los ejemplares de Dickinsonia de los Urales Centrales se caracterizan por una clara simetría bilateral. Tomando en cuenta las observaciones de especímenes australianos, consideramos que la llamada’simetría de reflexión por deslizamiento’ en estos fósiles es un fenómeno tafonómico. El gráfico de distribución de frecuencias de tamaño muestra el predominio de individuos juveniles en la población estudiada de Dickinsonia de los Urales Centrales. Asumiendo que la edad de un individuo se manifiesta por su tamaño, existe un predominio significativo de individuos juveniles en la población. Se pueden prever tres escenarios posibles: (1) la población tiene un gran número de individuos juveniles como resultado de la alta tasa de supervivencia en la zona intermareal; (2) la población está dominada por formas juveniles porque está enterrada inmediatamente después de la eclosión; (3) suponiendo que Dickinsonia fuera un organismo móvil activo, la abundancia de individuos juveniles podría explicarse por su incapacidad para escapar del entierramiento (aunque es difícil imaginar que algunos de los individuos maduros estén enterrados con signos de comportamiento de escape); y (4) la población podría interpretarse como un “lugar de nidificación” fosilizado para Dickinsonia en la zona intermareal, donde las formas juveniles maduraron antes de migrar a la zona submareal. La población de estudio puede caracterizarse como en expansión o estable; por lo tanto, el entorno intermareal puede describirse como favorable para estos organismo
    corecore