312 research outputs found

    Subwavelength micropolarizer in a gold film for visible light

    Get PDF
    Engineering and Physical Sciences Research Council (EPSRC) (EP/L017008/1); European Research Council (337508); Russian Foundation for Basic Research (RFBR) (14-07-97039, 14-29-07133, 15-07-01174, 15-37-20723, 16-07-00990, 16-29-11698); Ministry of Education and Science of the Russian Federation (MK-9019.2016.2).We have designed and fabricated a 100 μm x 100 μm four-sector binary subwavelength reflecting polarization microconverter in a gold film. Using finite-difference time-domain-aided numerical simulations and experiments, the micropolarizer was shown to convert an incident linearly polarized Gaussian beam of wavelength 532 nm into an azimuthally polarized beam. Conditions for generating on-axis regions of nonzero intensity when using propagating optical vortices with different initial polarization were deduced. By putting a spiral phase plate into an azimuthally polarized beam, the intensity pattern was shown to change from diffraction rings to a central peak.PostprintPeer reviewe

    Subwavelength grating-based spiral metalens for tight focusing of laser light

    Get PDF
    In this paper, we investigate a 16-sector spiral metalens fabricated on a thin film (130 nm) of amorphous silicon, consisting of a set of subwavelength binary diffractive gratings and with a numerical aperture that is close to unity. The metalens converts linearly polarized incident light into an azimuthally polarized optical vortex and focuses it at a distance approximately equal to the wavelength of the incident light, k ¼ 633 nm. Using a scanning near-field optical microscope, it is shown experimentally that the metalens forms an elliptical focal spot with diameters smaller than the diffraction limit: FWHMx ¼ 0.32k (60.03k) and FWHMy ¼ 0.51k (60.03k). The experimental results are close to those of a numerical simulation using the FDTD method, with FWHMx ¼ 0.37k and FWHMy ¼ 0.49k. The technological errors due to manufacturing were taken into account in the simulation. This is the smallest focal spot yet obtained with a metalens

    Subwavelength gratings for polarization conversion and focusing of laser light

    Get PDF
    We review thin micro-optics components with nanostructured microreliefs intended to control the polarization and phase of laser light. These components include transmission and reflection subwavelength diffraction gratings characterized by spatially −varying groove directions and fill factors, with the microrelief period and depth remaining approximately unchanged. In the visible spectrum, the microrelief features may vary in size from dozens to hundreds of nanometers. Segmented diffractive micropolarizers for linear to radial/azimuthal polarization conversion and subwavelength microlenses for tightly focusing the laser light are discussed in detail. Examples of particular micropolarizers and microlenses fabricated in amorphous silicon films are also given

    Tight focusing of laser light using a chromium Fresnel zone plate

    Get PDF
    Funding: Russian Scientific Foundation (17-19-01186).Using near-field scanning microscopy, we demonstrate that a 15-µm zone plate fabricated in a 70-nm chromium film sputtered on a glass substrate and having a focal length and outermost zone's width equal to the incident wavelength λ = 532 nm, focuses a circularly polarized Gaussian beam into a circular subwavelength focal spot whose diameter at the full-width of half-maximum intensity is FWHM = 0.47λ. This value is in near-accurate agreement with the FDTD-aided numerical estimate of FWHM = 0.46λ. When focusing a Gaussian beam linearly polarized along the y-axis, an elliptic subwavelength focal spot is experimentally found to measure FWHMx = 0.42λ (estimated value FWHMx = 0.40λ) and FWHMy = 0.64λ. The subwavelength focal spots presented here are the tightest among all attained so far for homogeneously polarized beams by use of non-immersion amplitude zone plates.PostprintPeer reviewe

    Electronic structure and magnetic properties of fete, bifeo3, srfe12o19 and srcotife10o19 compounds

    Get PDF
    The electronic energy structures and magnetic properties of iron-based compounds with group VI elements (FeTe, BiFeO3, SrFe12O19 and SrCoTiFe10O19) are studied using the density functional theory (DFT) methods. Manifestations of different types of chemical bonds in magnetism of these compounds are studied theoretically. Calculations of electronic structures of these systems are performed, by using the generalized gradient approximation (GGA) for the description of the exchange and correlation effects within DFT. For SrFe12O19 and SrCoTiFe10O19 hexaferrites, the GGA + U method is also employed to deal with strongly correlated 3d-electrons. The calculations have revealed distinctive features of the electronic structure of the investigated iron-based compounds with strongly correlated 3d-electrons, which can be responsible for their peculiar structural and magnetic properties

    Microlens-aided focusing of linearly and azimuthally polarized laser light

    Get PDF
    Funding: Russian Foundation for Basic Research (RFBR) (14-29-07133, 14-07-97039, 15-07-01174, 15-47-02492, 15-37-20723, 16-07-00990, 16-47-630483); Ministry of Education and Science of the Russian Federation (NSh-4128.2016.9, MK-9019.2016.2); European Research Council (337508).We have investigated a four-Sector transmission Polarization Converter (4-SPC) for a wavelength of 633 nm, that enables the conversion of a linearly polarized incident beam into a mixture of linearly and azimuthally polarized beams. It was numerically shown that by placing a Fresnel zone plate of focal length 532 nm immediately after the 4-SPC, the incident light can be focused into an oblong subwavelength focal spot whose size is smaller than the diffraction limit (with width and breadth, respectively, measuring FWHM = 0.28λ and FWHM = 0.45λ, where λ is the incident wavelength and FWHM stands for full-width at half maximum of the intensity). After passing through the 4-SPC, light propagates in free space over a distance of 300 μm before being focused by a Fresnel zone plate (ZP), resulting in focal spot measuring 0.42λ and 0.81λ. The focal spot was measured by a near-field microscope SNOM, and the transverse E-field component of the focal spot was calculated to be 0.42λ and 0.59λ. This numerical result was verified experimentally, giving a focal spot of smaller and larger size, respectively, measuring 0.46λ and 0.57λ. To our knowledge, this is the first implementation of polarization conversion and subwavelength focusing of light using a pair of transmission micro-optic elements.PostprintPeer reviewe

    The relativistic impulse approximation for the exclusive electrodisintegration of the deuteron

    Get PDF
    The electrodisintegration of the deuteron in the frame of the Bethe-Salpeter approach with a separable kernel of the nucleon-nucleon interaction is considered. This conception keeps the covariance of a description of the process. A comparison of relativistic and nonrelativistic calculations is presented. The factorization of the cross section of the reaction in the impulse approximation is obtained by analytical calculations. It is shown that the photon-neutron interaction plays an important role.Comment: 31 pages, 14 figures, 1 tabl

    Electronic structure and magnetic properties of RT4Al8 (R = Sc, Y, La, Lu; T = Fe, Mn, Cr) compounds. Hydrostatic pressure effects

    Get PDF
    We present results of theoretical and experimental studies of the electronic structure and magnetic properties of RFe4Al8, RMn4Al8, and RCr4Al8 compounds with nonmagnetic elements R = Sc, Y, La, and Lu. The electron spectrum and field induced magnetic moment, as well as their dependences on the unit cell volume, are calculated for the paramagnetic phase of the RT4Al8 systems. The calculations are supplemented by measurements of the magnetic susceptibility of representative RT4Al8 compounds as a function of temperature and hydrostatic pressure

    Single metalens for generating polarization and phase singularities leading to a reverse flow of energy

    Get PDF
    Using Jones matrices and vectors, we show that a metasurface-based optical element composed of a set of subwavelength diffraction gratings, whose anisotropic transmittance is described by a matrix of polarization rotation by angle mphiv, where phiv is the polar angle, generate an mth order azimuthally or radially polarized beam, when illuminated by linearly polarized light, or an optical vortex with topological charge m, when illuminated by circularly polarized light. Such a converter performs a spin–orbit transformation, acting similarly to a liquid-crystal half-wave plate. Using the FDTD-aided numerical simulation, we show that uniform linearly or circularly polarized light passing through the above-described optical metasurface with m = 2 and then tightly focused with a binary zone plate generates an on-axis near-focus energy backflow comparable in magnitude with the incident energy. Notably, the magnitude of the reverse energy flow is shown to be the same when focusing a circularly polarized optical vortex with topological charge m = 2 and a light beam with the second-order polarization singularity
    • …
    corecore