1,042 research outputs found

    Spatial evolution of short pulses under coherent population trapping

    Full text link
    Spatial and temporal evolution is studied of two powerful short laser pulses having different wavelengths and interacting with a dense three-level Lambda-type optical medium under coherent population trapping. A general case of unequal oscillator strengths of the transitions is considered. Durations of the probe pulse and the coupling pulse T1,2T_{1,2} (T2>T1T_2>T_1) are assumed to be shorter than any of the relevant atomic relaxation times. We propose analytical and numerical solutions of a self-consistent set of coupled Schr\"{o}dinger equations and reduced wave equations in the adiabatic limit with the account of the first non-adiabatic correction. The adiabaticity criterion is also discussed with the account of the pulse propagation. The dynamics of propagation is found to be strongly dependent on the ratio of the transition oscillator strengths. It is shown that envelopes of the pulses slightly change throughout the medium length at the initial stage of propagation. This distance can be large compared to the one-photon resonant absorption length. Eventually, the probe pulse is completely reemitted into the coupling pulse during propagation. The effect of localization of the atomic coherence has been observed similar to the one predicted by Fleischhauer and Lukin (PRL, {\bf 84}, 5094 (2000).Comment: 16 pages revtex style, 7 EPS figures, accepted to Physical Review

    Geometric phase and o-mode blue shift in a chiral anisotropic medium inside a Fabry-P\'erot cavity

    Get PDF
    Anomalous spectral shift of transmission peaks is observed in a Fabry--P\'erot cavity filled with a chiral anisotropic medium. The effective refractive index value resides out of the interval between the ordinary and the extraordinary refractive indices. The spectral shift is explained by contribution of a geometric phase. The problem is solved analytically using the approximate Jones matrix method, numerically using the accurate Berreman method and geometrically using the generalized Mauguin--Poincar\'e rolling cone method. The oo-mode blue shift is measured for a 4-methoxybenzylidene-4'-nn-butylaniline twisted--nematic layer inside the Fabry--P\'erot cavity. The twist is electrically induced due to the homeoplanar--twisted configuration transition in an ionic-surfactant-doped liquid crystal layer. Experimental evidence confirms the validity of the theoretical model.Comment: the text is available both in English (Timofeev2015en.tex) and in Russian (download: other formats - source - Timofeev2015ru.tex, Timofeev2015rus.pdf

    Theory of second-harmonic generation in a chirped 2D nonlinear optical superlattice under nonlinear Raman-Nath diffraction

    Get PDF
    We analyze second-harmonic generation (SHG) in a two-dimensional nonlinear optical superlattice (NLOS) with its modulation period being chirped in the propagation direction and constant in the transverse direction. This results in efficient multiple SHG via nonlinear Raman–Nath diffraction. We obtain exact analytical expressions for a SH amplitude generated in chirped 2D NLOSs and for its quasi-phase-matching bandwidth. The results of analytical calculations are in excellent agreement with the numerical ones. We show that the process is robust to angular deviations of NLOS and it can be applied to enable tunable and broadband frequency conversion

    Ultranarrow resonance peaks in the transmission and reflection spectra of a photonic crystal cavity with Raman gain

    Full text link
    The Raman gain of a probe light in a three-state Ξ›\Lambda -scheme placed into a defect of a one-dimensional photonic crystal is studied theoretically. We show that there exists a pump intensity range, where the transmission and reflection spectra of the probe field exhibit \textit{simultaneously} occurring narrow peaks (resonances) whose position is determined by the Raman resonance. Transmission and reflection coefficients can be larger than unity at pump intensities of order tens of ΞΌ\muW/cm2^{2}. When the pump intensity is outside this region, the peak in the transmission spectrum turns into a narrow dip. The nature of narrow resonances is attributed to a drastic dispersion of the nonlinear refractive index in the vicinity of the Raman transition, which leads to a significant reduction of the group velocity of the probe wave.Comment: 9 pages, 3 figure

    Coherent control of light-pulse propagation in a Raman induced grating

    Get PDF
    We study light-pulse propagation in a dynamically controllable periodic structure (grating) resulting from Raman interaction of a weak probe pulse with a standing-wave pump and a second control laser field inN-type four-level atomic media. The grating is induced due to periodic spatial modulation of the Raman gain in a standing pump field (Raman gain grating). We show that it is possible to control both the probe pulse amplitude and the group velocity of the pulse from subluminal to superluminal by varying the pump or control field. Such a grating is of interest forall-optical switches and transistors

    Parton Energy Loss in Heavy-Ion Collisions Via Direct-Photon and Charged-Particle Azimuthal Correlations

    Get PDF
    Charged-particle spectra associated with direct photon Ydir) and Ο€0 are measured in p+p and Au+Au collisions at center-of-mass energy √sNN=200 GeV with the STAR detector at the Relativistic Heavy Ion Collider. A shower-shape analysis is used to partially discriminate between Ydirand Ο€0. Assuming no associated charged particles in the Ξ³dir direction (near side) and small contribution from fragmentation photons (Yfrag), the associated charged-particle yields opposite to Ydir(away side) are extracted. In central Au+Au collisions, the charged-particle yields at midrapidity (|Ξ·|\u3c1) and high transverse momentum (3 \u3c PTassoc \u3c 16 GeV/c) associated with Ξ³dir and Ο€0 (|Ξ·|\u3c0.9, 8 \u3c PTtrig \u3c16 GeV/c) are suppressed by a factor of 3–5 compared with p+p collisions. The observed suppression of the associated charged particles is similar for Ydir and Ο€0 and independent of the Ξ³direnergy within uncertainties. These measurements indicate that, in the kinematic range covered and within our current experimental uncertainties, the parton energy loss shows no sensitivity to the parton initial energy, path length, or color charge

    Multiple nonlinear Bragg diffraction of femtosecond laser pulses in a Ο‡2 photonic lattice with hexagonal domains

    Full text link
    The frequency doubling of femtosecond laser pulses in a two-dimensional (2D) rectangular nonlinear photonic lattice with hexagonal domains is studied experimentally and theoretically. The broad fundamental spectrum enables frequency conversion under nonlinear Bragg diffraction for a series of transverse orders at a fixed longitudinal quasi-phase-matching order. The consistent nonstationary theory of the frequency doubling of femtosecond laser pulses is developed using the representation based on the reciprocal lattice of the structure. The calculated spatial distribution of the second-harmonic spectral intensity agrees well with the experimental data. The condition for multiple nonlinear Bragg diffraction in a 2D nonlinear photonic lattice is offered. The hexagonal shape of the domains contributes to multibeam second harmonic excitation. The maximum conversion efficiency for a series of transverse orders in the range 0.01%-0.03% is obtained. Β© 2018 Astro Ltd
    • …
    corecore