
PHYSICAL REVIEW E 92, 052504 (2015)

Geometric phase and o-mode blueshift in a chiral anisotropic medium inside a Fabry-Pérot cavity
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Anomalous spectral shift of transmission peaks is observed in a Fabry-Pérot cavity filled with a chiral
anisotropic medium. The effective refractive index value resides out of the interval between the ordinary and the
extraordinary refractive indices. The spectral shift is explained by contribution of a geometric phase. The problem
is solved analytically using the approximate Jones matrix method, numerically using the accurate Berreman
method, and geometrically using the generalized Mauguin-Poincaré rolling cone method. The o-mode blueshift is
measured for a 4-methoxybenzylidene-4′-n-butylaniline twisted-nematic layer inside the Fabry-Pérot cavity. The
twist is electrically induced due to the homeoplanar-twisted configuration transition in an ionic-surfactant-doped
liquid crystal layer. Experimental evidence confirms the validity of the theoretical model.
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I. INTRODUCTION

Optics of liquid crystals (LCs) is well known for fruitfulness
in applications and a remarkable variety of connections
between observable physical phenomena [1]. A fascinating
connection can be traced between the concept of geometric
phase (GP) [2], also known as a topological phase, and
a number of phenomena in quantum, relativistic, classical
physics [3], and, in particular, optics [4–6]. Today photonics
is at the apogee of topological ideas [7,8]. On the one
hand, it originates from the condensed-matter graphene idea
and the concept of topological insulators [9]. On the other
hand, it arises from the optical technology advance. For
instance, recently the three-dimensional structure of the field
of light polarizations with nontrivial topology has been directly
measured [10].

GP in twisted-nematic polarization phenomena [11] has
application for the design of wave fronts using Pancharatnam-
Berry phase optical elements [12,13]. Remarkably, polariza-
tional GP is independent of the total phase, so it is used to offset
the frequency of a laser beam by GP modulators, adding the
mechanical rotation frequency of a quarter-half-quarter-wave-
plate Pancharatnam device [14–16]. It permits switching by
ferroelectric LC [17].

Considerable attention is attracted to the research of LC
placed inside a Fabry-Pérot cavity (LC-FPC), combining
small-voltage LC manipulation and high spectral resolution
of the Fabry-Pérot interferometer. Fundamental photonic
degrees of freedom—in transmittance [18–21], phase [22],
and polarization [23]—can be efficiently controlled. Polariza-
tion control usually uses the Mauguin adiabatic waveguide
mode [24] in a chiral anisotropic medium, particularly in a
twisted-nematic (TN) LC layer inside the Fabry-Pérot cavity
(TN-FPC) [25].

The basic method for TN-FPC calculation is the Jones
formalism of complex vectors and matrices of dimension

*Corresponding author: tiv@iph.krasn.ru

2 [26]. Abelès [27,28] had introduced the Chebyshev identity
for the matrix power which was successfully employed
in both layered and anisotropic media [29–31]. To solve
the problem, one finds an eigenwave (optical mode) which
conserves its shape while propagating through the medium.
A set of eigenwaves is described by the eigenvectors and the
eigenvalues of the Jones matrix.

Another approach to find the eigenwaves is to solve the
Riccati-like ordinary differential equation system [32–34].
Within the framework of coupled-mode theory and modal
analysis, this approach is equivalent to the matrix one (see
Appendix C in [35]).

The account of weak reflection waves arising in LC bulk
led to a generalized Berreman formalism for matrices of
dimension 4 [36–38]. This generalization is necessary in
media such as a cholesteric LC [39–42] and a TN cell of
small thickness and other media with a sharp spatial variation
of dielectric characteristics at the wavelength scale [43–46].
However, Jones formalism gives a good approximation when
the thickness of the TN cell is several times larger than the
wavelength and the dielectric constant varies smoothly.

Assuming no weak reflection waves arising in the LC bulk,
the TN-FPC behavior was described at high voltages [25] as
well as at low voltages [34,47]. The connection between these
two extreme cases is described in [48] and generalized in [49].
Another approach is the substitution of the multilayer medium
by an effective homogeneous anisotropic plate [50]. The
independent method is incorporated in [24,51] using distinct
mathematical tools: group theory and phase space. Also
TN-FPC can be considered as a one-dimensional photonic
crystal [52–55]. The photonic crystal itself can be formed by
a LC material [56,57].

The orientation model of the LC layer is required to
determine its optical response. To the best of our knowledge,
in a TN under electrical voltage the general orientation
model cannot be derived analytically and is simulated nu-
merically, even for the one-dimensional case [58]. In contrast
to an in-plane-oriented nematic [59], TN produces optical
mode coupling manifested as avoided crossing of spectral
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transmission peaks [58]. A certain way to eliminate the mode
coupling using anisotropic mirrors is suggested in [60]. The
original theoretical study of the apparent paradox of the mode
number jump for mode coupling inside a TN-FPC is proposed
in [47].

This article examines the TN-FPC sample with no electric
voltage deformation that allows analytical description. The
direction of the spectral shift of the transmission peaks is far
from obvious. That is why a visual connection is presented
for the proposed spectral shift and the GP shift. This shift
observation is hindered by interplay of four optical waves
of opposite directions and orthogonal polarizations. Positive
feedback condition describes the total spectral shift (SS),
assuming three types of wave coupling. The first type of
the coupling originates from LC twist which induces a twist
spectral shift (TSS). The second coupling type is produced
by cavity mirror reflection which induces a reflection spectral
shift (RSS). The third coupling type is produced by weak
reflection waves arising in the LC bulk; in the analytical part of
this research it is assumed insignificant. Previously developed
theory [34,48] is generalized for the account of anisotropy at
mirror reflection, meaning the distinct reflection phases of e-
and o-wave components. The reflection is anisotropic even
when the mirror is made of an isotropic material while the
cavity medium itself is anisotropic.

The experimental scheme excludes significant SS impact
from parasitic factors other than TSS and RSS. The experiment
confirms the theory qualitatively and quantitatively.

II. ANALYTIC MODEL

A FPC consists of two plane mirrors (Fig. 1). The reflecting
surfaces are oriented in the xy plane. A nematic is placed
between the cavity mirrors. The LC director is a unit vector
of predominant direction of LC molecules. Twist is the state
when a nematic layer is divided into thin lamellar sublayers
with the nematic director being constant inside every sublayer
and rotating from sublayer to sublayer. Uniform twist with no
orienting external fields is implied when the LC director rotates
uniformly in the plane of sublayers along the right screw.
In Fig. 1 the twist angle is 80◦; hence, the analysis is valid
for an arbitrary angle. The LC director field determines the
local dielectric tensor all over the medium. The extraordinary
dielectric permittivity axis is collinear to the LC director.
Consider the nematic with a positive uniaxial anisotropy. The
extraordinary and ordinary refractive indices (RIs) correspond
to waves with slow and fast phase velocities and equal to
ne,o = n ± δn.

FIG. 1. (Color online) Sketch of TN-FPC, a cavity with a chiral
anisotropic medium.

Let the average phase σ , anisotropy phase (angle) δ, and
twist angle ϕ be linear functions of the coordination z along
the layer normal direction,

σ (z) = nk0z, δ(z) = δkz, ϕ(z) = kϕz,

where k0 = ω/c is the angular wave number, δk = δnk0,
kϕ = ϕ(L)/L, and L is the nematic layer thickness or distance
between mirrors. At z = L, let function values σ (z = L),
δ(z = L), and ϕ(z = L) be written simply as σ , δ, and ϕ,
respectively, without the function argument. Let the light
impinge to the TN-FPC strictly in the z direction. Electric
field strength is described by the pair of x and y projections,

Ex(z) exp{i[ωt − σ (z)]} + c.c.,
(1)

Ey(z) exp{i[ωt − σ (z)]} + c.c.,

where c.c. stands for the complex conjugate component. It is
convenient to write the pair of complex amplitudes Ex,y as the
Jones vector [26]:

�exy(z) =
[
Ex(z)

Ey(z)

]
.

The Jones matrix for an untwisted nematic at ϕ = 0 is diagonal
when the nematic director is collinear to the x axis:

�̂(δ) =
[
e−iδ 0

0 e+iδ

]
. (2)

Note that the extraordinary field component along the x axis
has negative phase shift according to standard notion (1):

�exy(L) = �̂�exy(0) =
[
Ex(0)e−iδ

Ey(0)e+iδ

]
.

The Jones matrix �̂ is the transfer matrix (or propagation
matrix) of the layer. It transfers a polarization state from one
layer boundary to another by multiplying the corresponding
Jones vector.

A. Traveling eigenwaves for a uniformly twisted nematic

For the convenience of subsequent interpretation, let us
present a direct trigonometric derivation of some general
expressions for a traveling wave in a chiral anisotropic
medium. Let us divide a TN layer into a series of equal
sublayers, each with the thickness dz and the anisotropy angle
dδ = δ(dz) = δkdz. Generally, the following is valid for finite
not twisted sublayers. The twist angle dϕ = ϕ(dz) = kϕdz

is the angle between the dielectric permittivity main axes
of neighboring sublayers. The italicized form “d” is used
to distinguish it from the particular case of infinitesimal
differential operator.

The rotation matrix is written as

�̂(ϕ) =
[

cos ϕ sin ϕ

− sin ϕ cos ϕ

]
. (3)

It rotates the reference frame about the z axis by the ϕ angle.
The Jones matrix for the wave plate (retarder) situated at the
ϕ angle is written as

�̂ϕ = �̂−1�̂�̂.

In the rotating frame the polarization ellipse appears to be
rotated by negative angle −ϕ. The total Jones matrix is written
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as the matrix product:

Ĵ0 = �̂

(
−ϕ + dϕ

2

)
�̂(dδ)�̂

(
ϕ − dϕ

2

)
· · ·

×�̂

(
−3dϕ

2

)
�̂(dδ)�̂

(
3dϕ

2

)

×�̂

(
−dϕ

2

)
�̂(dδ)�̂

(
dϕ

2

)
= �̂(−ϕ)Ĵ .

The product is supposed to be read from right to left with
increase of z, because the Jones column vector is substituted
on the right side of the matrix. In the rotating frame of the
matrix Ĵ the LC director is always collinear to the primary
axis. It is the e − o frame which is often used in description of
chiral media [34,61].

z-axis rotations are additive,

�̂(ϕ2)�̂(ϕ1) = �̂(ϕ2 + ϕ1),

so the Jones matrix is naturally decomposed into the product
of certain sublayer matrices,

Ĵ = dĴ NS =
[
�̂

(
dϕ

2

)
�̂(dδ)�̂

(
dϕ

2

)]NS

, (4)

where NS = ϕ/dϕ is the number of sublayers. Substitution of
Eqs. (2) and (3) gives

dĴ =
[

Ja Jb

−J ∗
b J ∗

a

]
, (5)

where

Ja = cos(dϕ) cos(dδ) − i sin(dδ),

Jb = sin(dϕ) cos(dδ).

Eigenvectors �eJ of the matrix dĴ describe polarization con-
served in the rotating basis, and eigenvalues gJ of the matrix
dĴ are phase factors of propagation through the medium layer.
The eigenvalue condition is

dĴ �eJ = gJ �eJ ,

det(dĴ − gJ Î ) = 0, (6)

det(dĴ ) − tr(dĴ )gJ + g2
J = 0,

where Î is the identity matrix. According to Eq. (5), the
determinant of the matrix equals

det(dĴ ) = 1.

The transfer matrix is unimodular when the transferred energy
is conserved. The trace of the matrix is

tr(dĴ ) = 2 cos(dϕ) cos(dδ).

Let us introduce a new twisted anisotropy angle defined as the
following:

cos(dυ) ≡ cos(dϕ) cos(dδ). (7)

The solution of Eq. (6) can then be written as

g∓
J = cos(dυ) ∓ i sin(dυ) = exp(∓idυ).

The eigenvectors take the forms

�e−
J = �ete =

[
cos ϑ

−i sin ϑ

]
, �e+

J = �eto =
[−i sin ϑ

cos ϑ

]
, (8)

where

ϑ = 
/2,

cos 
 ≡ sin(dδ)/ sin(dυ), (9)

sin 
 ≡ sin(dϕ) cos(dδ)/ sin(dυ).

Trigonometrical Eqs. (8) are equivalent to algebraic Eqs. (4.3-
31,32) in [31].

In the literature the pair of eigenwaves described by (8)
has several names [31,34,62–64]. As usual, the terminology
is chosen depending on domination of the anisotropy angle
or the twist angle. With zero twist dϕ = 0 and ϑ = 0, the
eigenwave �e−

J is simplified into an extraordinary e wave, and
�e+
J is simplified into an ordinary o wave. They are named as

quasi-e and quasi-o waves [34] or te and to waves (“twisted
waves”) [31]. The latter italicized form is appropriate here.
However, the elliptically polarized te wave may be confused
with the linearly polarized TE wave (transverse electric mode),
whose electric field is perpendicular to the reference plane or
axis. Also, this abbreviation (extraordinary or ordinary) may
be confused with the parity abbreviation (even or odd). The
chirality of the te wave is opposite to LC director chirality. The
chirality of the to wave is the same as LC director chirality.
Consequently, the wave pair use to be termed as “opposite
chirality” wave and “same chirality” wave [62]. In cholesteric
LC the to wave demonstrates the Bragg reflection, while the te
wave is nondiffractive. That is another way to distinguish the
eigenwaves [63,64].

The matrix dĴ is diagonalizable using the unitary matrix
Û to transform basic vectors ee,o into ete,to,

Û−1 = [�ete �eto] =
[

cos ϑ −i sin ϑ

−i sin ϑ cos ϑ

]
,

Û = (Û−1)† =
[

�e†te
�e†to

]
=

[
cos ϑ i sin ϑ

i sin ϑ cos ϑ

]
,

where the symbol “†” indicates the Hermitian conjugation.

dĴ = Û−1

[
e−idυ 0

0 e+idυ

]
Û . (10)

The diagonalization simplifies the Jones matrix [Eq. (4)]
exponentiation:

Ĵ = {dĴ }NS = Û−1

[
e−iυ 0

0 e+iυ

]
Û ,

Ĵ =
[

cos υ − i sin υ cos 
 sin 
 sin υ

− sin 
 sin υ cos υ + i sin υ cos 


]
. (11)

The uniform twist condition was used:

NS = ϕ

dϕ
= δ

dδ
= υ

dυ
= z

dz
.

The solution (11) is valid for sublayers of finite thickness and
is the representation of Chebyshev identity [29]. Equation (7)
for the angle dυ is the Pythagorean theorem for the spherical
right triangle.

For the smooth twist function ϕ(z) the sublayer thickness
dz tends to vanish. The solution can be simplified using the
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Pythagorean theorem for the plane right triangle:

dυ2 = dδ2 + dϕ2.

It is easy to derive it by tailoring the cosines in Eq. (7).
Multiplication by N2

S produces

υ2 = δ2 + ϕ2. (12)

The total wave phase then is written as

σ ± υ = σ ±
√

δ2 + ϕ2. (13)

Let us name it the Mauguin formula. The effective RI is found
by dividing both sides by k0L:

nte,to = n ±
√

δn2 + (ϕ/k0L)2. (14)

The eigenwave ellipticity parameter 
 from Eq. (9) can be
reduced as relation

tan 
 = ϕ/δ. (15)

Physically this ellipticity is the smoothness of the twist angle
growth in comparison with the anisotropy angle growth. It is
the adiabatic parameter of Mauguin’s waveguide regime.

B. Mirror reflection matrix

The mirror reflection matrix has two multipliers: the phase
matrix M̂0 and the half-turn rotation matrix R̂. For a mirror
made of metal with RI nm the reflection originates from high RI
contrast with LC (nm − n � δn). In this case the phase matrix
M̂0 is approximately isotropic. However, for the dielectric
multilayer Bragg mirror, the RI contrast is not high and the
phase matrix is far from isotropic,

M̂0 =
[

exp(−iμe) 0
0 exp(−iμo)

]

= exp(−iσμ)

[
exp(−iδμ) 0

0 exp(+iδμ)

]

= exp(−iσμ)M̂.

Various algorithms are used to find phases μe,o for certain
mirrors [65,66].

Assume the half-turn rotation matrix to act on the axis
perpendicular to LC director,

R̂ =
[−1 0

0 1

]
.

Obviously, the double reflection of R̂2 produces the identity
matrix.

C. Perfect cavity eigenwave

Assume the cavity is perfect (free of losses). The whole loop
of the wave propagation through the cavity consists of a couple
of passages and a couple of reflections. The corresponding
matrix is the square of the half-loop matrix,

L̂ = {Ĥ exp(−iσ − iσμ)}2

= Ĥ 2 exp(−2iσ − 2iσμ), (16)

where Ĥ = R̂M̂Ĵ .

If the polarization matrix Ĥ is not an identity matrix, then
its eigenvectors coincide with the eigenvectors of L̂. The
eigenvalues of L̂ are expressed through the eigenvalues of
Ĥ :

gL = g2
H exp(−2iσ − 2iσμ).

Now one can find the eigenvalues of Ĥ ,

Ĥ =
[
Ha Hb

H ∗
b −H ∗

a

]
,

where

Ha = − exp(−iδμ)(cos υ − i sin υ cos 
),

Hb = − exp(−iδμ)(sin 
 sin υ),

det(Ĥ ) = −1,

tr(Ĥ ) = 2i(cos υ sin δμ + sin υ cos 
 cos δμ) ≡ 2i cos ρ0.

The eigenvalues are

gH = i(cos ρ0 ∓ i sin ρ0)

= exp[i(π/2 ∓ ρ0)]

≡ ± exp(±iρ),

where the resonator phase ρ ≡ π/2 − ρ0,

sin ρ = cos ρ0 = cos υ sin δμ + sin υ cos 
 cos δμ. (17)

The solution corresponds to a couple of modes resonating
inside the cavity (standing waves) and let us denote them as re
and ro waves.

In the exotic case where δμ = π/2, Eq. (17) is simplified to
ρ0 = ±υ. In [60] the anisotropic mirrors are suggested with
phases μe = π, μo = 0; consequently, σμ = δμ = π/2,

gL = exp[−2(σ + σμ ± ρ)]

= exp[−2(σ ∓ ρ0) + π (1 ± 1)]

= exp[−2(σ ± υ)].

The reflection coupling is removed and RSS is eliminated.
In the isotropic reflection case of δμ = 0, Eq. (17) reduces

to

sin ρ = sin υ cos 
. (18)

It is equivalent to expressions presented in [34,48].

D. Positive feedback condition

The position of transmission peaks is determined by
eigenfrequencies of perfect cavity waves (modes). They satisfy
the positive feedback condition [67] for the total phase shift to
be a multiple of 2π ,

−2σ − 2σμ ∓ 2ρ = −2πN, ∓ ρ = σ + σμ − πN,

where N is the cavity mode number. Using Eq. (17),

∓ sin(σ + μ− πN ) = cos υ sin δμ + sin υ cos 
 cos δμ.

(19)

Here the minus sign corresponds to the te wave, whereas the
plus sign corresponds to the to wave. It is possible to solve this
trigonometric equation graphically.
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FIG. 2. (Color online) The dispersion curves. The abscissa axis shows the phase shift proportional to the wave vector. The ordinate axis
shows the number of modes, proportional to the frequency of the wave. Blue (dark gray) lines show o, to, ro waves; green (light gray) lines show
e, te, re waves. The calculation parameters are ϕ = π/2, δn/n = 0.3. (a) TSS calculated with Eq. (13). Points O and T indicate the frequencies
of mode 3 for o and to waves, respectively. Point B corresponds to the zeroth mode. The splitting at point B is not shown. (b) RSS calculated
with Eq. (21). Points T and R show the frequencies of mode 3 for to and ro waves, respectively. G1 and G2 are Gooch-Terry minima (22) and
G3/2 is the Gooch-Terry maximum (23).

E. Dispersion curves and TSS

Figure 2(a) shows dispersion curves of te and to waves for
ϕ = π/2 and ϕ = 0. Scales are dimensionless for both axes. At
the ordinate the o-mode number No = (σ − δ)/2π = 2L/λo is
proportional to the frequency of the light field. At the abscissa
the phase shift is the wave number multiplied by the cavity
length.

The branch of the to wave does not show the splitting by the
cholesteric stop band ([1], at p. 354), for ϕ = π/2 at σ = υ,
in the point B of Fig. 2(a). The splitting is omitted in Eq. (13).
Dashed curves for the untwisted structure correspond to o and
e waves: υ(ϕ = 0) = δ. Points O and T indicate the TSS of
mode 3 from the o to the to wave. Calculated curves for te and
to waves lie outside of the intervals of o- and e-wave phases. It
illustrates the fact that effective RI lies outside of the interval
determined by the ordinary and extraordinary RI.

Let us use Eq. (11) to determine the twist phase shift,

υ − δ =
√

δ2 + ϕ2 − δ,

assuming ϕ 	 δ gives

υ − δ = δ

(√
1 + ϕ2

δ2
− 1

)
≈ δ

(
ϕ2

2δ2

)
= ϕ2

2δ
. (20)

F. Dispersion curves and RSS

Figure 2(b) illustrates dispersion curves for re and ro waves
under simplification by Eq. (18):

∓ arcsin(sin υ cos 
) = σ − πN. (21)

The left-hand side of Eq. (21) at σμ = 0 was shown earlier
in [34] as a resonance diagram. The right-hand side of Eq. (21)
produces constant-slope lines. The reduced zone with the
period π corresponds to the half-loop. The positive feedback
condition (21) is fulfilled at every intersection of the magenta
curve (strait lines) with the green (light gray) or blue (dark
gray) one for re- and ro-wave frequencies corresponding to
spectral transmission peaks. Dashed dispersion curves corre-
spond to te and to waves ∓ arcsin[sin υ cos(
 = 0)] = ∓υ.

These lines describe the zeroth-order approximation, no
reflection coupling. Points T and R indicate the RSS of mode
3 from the to to the ro wave.

Dispersion curves for te, to, re, and ro waves meet at points
G1,2,... where the Gooch-Terry minimum condition is valid:

sin(υ) = 0. (22)

The condition was obtained for minimal TN cell transmit-
tance [32]. In Gooch-Terry minima both resonator phase ρ

and twisted anisotropy phase υ are multiples of π . The Jones
matrix Ĵ [Eq. (11)] is degenerated into a unit matrix,

Ĵ = ±Î ,

with ±1 eigenvalues and arbitrary eigenvectors. Let the
condition

sin2 υ = 1 (23)

be the Gooch-Terry maximum condition. Note that this
simple condition describes local maxima of the TN cell
transmittance only approximately. In fact, the Gooch-Terry
transmittance is a sinc function of phase, and maxima of this
function are slightly nonequidistant. Figure 2(b) shows that in
Gooch-Terry maxima the phase ρ is maximally distant from
the phase ±υ. This difference is given by substituting the
condition (23) into Eq. (21),

υ = arcsin(1) = π/2,

ρ = arcsin(cos 
) = π/2 − 
,

υ − ρ = 
.

The maximum difference is described by the adiabatic pa-
rameter 
. Near the Gooch-Terry maximum the difference
decreases according to the law:

min(π − ρ − υ,υ − ρ) =
√

1 + 
2 tan2 υ − 1

|tan υ| . (24)

Near the Gooch-Terry maximal point G3/2, the four dispersion
curves form a typical pattern called avoided crossing. In
oscillation theory re and ro waves correspond to normal
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frequencies, while te and to waves correspond to partial
frequencies [68]. In quantum mechanics re and ro waves cor-
respond to adiabatic states, while te and to waves correspond
to diabatic states [69]. Both terminologies are used in optics.

The alternation of Gooch-Terry minima and maxima in
Fig. 2(b) can be interpreted as an alternation of crossings
and avoided crossings of transmission peaks [47,58]. Con-
ditions (22) and (23) for the untwisted medium correspond
to the respective conditions of sin2 δ = 0 and sin2 δ = 1.
The Gooch-Terry minimum matches the twisted analog of a
wave plate. This wave plate retards the te wave compared to
the to wave by an integer number Nδ of wavelengths with
phase shift 2πNδ . Gooch-Terry maxima correspond to phase
shifts of (2Nδ + 1) π .

G. Spectral shifts

Consider the total spectral shift �λ of the TN compared
with an untwisted counterpart. Without loss of generality we
consider the o wave. For the e wave one can derive symmetric
formulas with the opposite sign: �λe = −�λo

Dimensionless relative shift of the vacuum wavelength λ is

�λ

λ
≈ − �k

k0 − δk
= −ρ − δ

σ − δ
.

The average phase σ can be excluded by use of the following
relation:

λ

σ − δ
= λ2

2πnoL
.

Substituting ρ from Eq. (18) gives

�λ = − λ2

2πnoL
[arcsin(sin υ cos 
) − δ]. (25)

Using approximations (24) and (20) one obtains

�λ = �λTSS + �λRSS

= − λ2

2πnoL

(
ϕ2

2δ
∓

√
1 + 
2 tan2 υ − 1

tan υ

)
. (26)

Far from the Gooch-Terry maximum condition, the second
summand �λRSS can be neglected:

�λTSS = − λ

2πnoL

(
ϕ2

2δ

)

= − λ2ϕ2

2πno2L2πδnL/λ
= − λ3

2nδn

(
ϕ

2πL

)2

. (27)

For the o wave TSS is wavelength-negative �λTSS < 0, and
peaks are shifted in the shortwave region, i.e., blueshifted.
However, near the Gooch-Terry maximum, tan (υ) → ∞ so
that

�λ ∼ ϕ2

2δ
−

√
1 + 
2 tan2 υ − 1

|tan υ| = ϕ2

2δ
− 
 ≈ ϕ2 − 2ϕ

2δ
.

For example, at ϕ = π/2,

�λ ∼ ϕ − 2 = π − 4

2
< 0.

Thus, at ϕ < 2 (in radians) the RSS component may locally
reverse the total shift direction from blue to red.

TABLE I. Three levels of anisotropy complexity.

Anisotropic medium Homogeneous Twisted TN-FPC

Eigenwave o,e to,te ro,re
Eigenpolarization Linear Elliptic Linear at boundaries

III. INTERPRETATION

Three levels of anisotropy complexity are presented in
Table I and illustrated in Fig. 3. Eigenwaves re and ro have
linear polarizations at mirrors of the cavity [47,48]. These
polarizations are biased from the LC director and the direction
orthogonal to the LC director by the deflection angle ξ . With
increasing frequency linear polarizations rotate continuously,
passing from one of the principal axes to another. Therefore,
we suggest to denote the eigenwaves as e2o and o2e waves (the
English words “two” and “to” are pronounced identically). At
the Gooch-Terry maximum the polarization coincides with the
bisectors ξ = ±45◦. Therefore, the waves are called bisector
and orthogonal bisector [48]. It is convenient to treat the e2o

wave as the re wave while it is close to the e wave and to change
its name to the ro wave after it passes through the bisector and
gets close to an o wave. Vice versa for the o2e wave. Dispersion
curves in Fig. 2(b) show this renaming by changing color at the
Gooch-Terry maximum. The curve G1RG2 for the o2e wave
is blue (dark gray) in the lower part for the ro wave. It is green
(light gray) in the upper part for the re wave.

A. Poincaré sphere

There is a variety of methods to make the results
more comprehensive and visually attractive. They are the
complex-number representation of polarization, Poincaré
sphere [31,33,70,71], high-order and hybrid-order Poincaré
spheres [72,73], admittance diagram method, Volpert-Smith
chart and three-dimensional (3D) Smith chart [65,74], and
the rolling cone method [24,75]. The last method provides a
mechanical visualization of Eqs. (12) and (7) with a sum of
orthogonal angular velocities of a solid cone rolling on a plane.
For the sublayers of finite thickness the cone is replaced with
the pyramid. The cone is rolling in a characteristic space of
light polarization ellipses. This space is usually represented as
a sphere of unit radius called the Poincaré sphere (PS).

Figure 4 shows a to-wave polarization trajectory and a
ro-wave polarization trajectory (in blue, TT′, magenta, RR′,
respectively). They smoothly evolve with the penetration depth
of the TN layer under the action of operator Ĵ0. For the
right-handed to and ro waves it is convenient to set the
right-handed polarization in the upper hemisphere of PS as
in [33,35], and not in the lower one, as in [6,31,76]. The
trajectory RR′ is the spherical trochoid [77]. It is associated
with a trajectory of a point rigidly connected with a solid
cone [Fig. 5(a)] rolling without slipping on a plane [24]. A
stereographic projection of a similar trajectory is presented in
Ref. [33], p. 136, Fig. 2.24.

For further consideration it is essential that the unimodular
Jones matrix has the geometrical sense of the PS rotation. Jones
vectors correspond to PS points. Distances between points are
conserved at transformations on the spherical surface. The
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FIG. 3. (Color online) Representative polarizations at medium boundaries z = 0 (a) and z = L (b). Blue (dark gray) lines show o, to, ro
waves; green (light gray) lines show e, te, re waves. The twist angle ϕ is between the o and the y directions. The o-deflection angle ξ is between
o and ro directions. The e-deflection angle between e and re directions has the same magnitude as ξ at both boundaries.

PS point is often regarded either as the normalized triplet
of Stokes parameters or as the polarization ellipse traced by
the terminal point of the field vector. In both cases PS is a
2D manifold. However, the Jones vector has three degrees of
freedom. Its third phase is the temporal phase. It progresses
by 2π while the field vector passes the elliptic trajectory. The
3-phase polarization state is the one-to-one representation of
the Jones vector. This polarization state is regarded either as the
triplet of Euler angles or as the unit quaternion. The space of
all polarization states is a 3-sphere. The Hopf fibration projects
it onto PS which is a 2-sphere [6]. The unit quaternion may
be imagined as a “flag” consisting of two arrows. The first
polarization arrow goes from the center of PS to its surface. The
second arrow of temporal phase is connected to the terminal

0 80 160
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R O
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yx

yx
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(a)
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′
′

FIG. 4. (Color online) Poincaré sphere (a) and a portion of
its cylindrical projection (b). Directions y, x − y, x, and x + y

correspond to angles � = 2ϕ = 0◦, 90◦, 180◦, and 270◦, respectively.
Trajectories under the action of operator Ĵ0 for ϕ = 80◦: OO′, linear
polarizations on the PS “equator” corresponding to o wave; TT′,
to-wave trajectory on the PS “parallel” with latitude 
; RR′, ro-wave
trajectory, a spherical trochoid. The parameters correspond to the
rightmost peak in the below-mentioned experimental spectrum of
Fig. 8(a), λ = 579.1 nm.

point of the first arrow and goes in a perpendicular direction
(similar to that shown in Fig. 2 of Ref. [78]). If the polarization
arrow is rotated, then the entire flag of the polarization state is
rotated about the same axis. With the temporal phase increase
the second arrow rotates around the first one. Remarkably,
one period on the polarization ellipse corresponds to two
revolutions of the flag. Strictly speaking, Jones matrices form

OE

T

Te

R

G

0G

O
T

R

(a)

(b)

FIG. 5. (Color online) The rolling cone method on the PS. (a)
Points O, T, and R describe the polarizations of o, to, and ro waves
at the boundary of the twisted layer. The Mauguin cone contains the
point T on its axis and the point O on its generator. Spherical triangle
OTR has a right angle ∠ROT. The cathetus RO = � = 2ξ lies on
the “equator.” The cathetus TO = 
 = 2ϑ is perpendicular to the
“equator.” Acute angles are ∠RTO = υ and ∠ORT = ρ0. The area is
equal to spherical excess �(OTR) = (π/2 + υ + ρ0) − π = υ − ρ.
(b) Points E and Te describe polarizations of e and te waves. The
great circle G0G is perpendicular to the diameter TTe. The big circle
TeGRT in the Gooch-Terry minimum coincides with the great circle
TeG0OT. Distance to the Gooch-Terry minimum for the to wave is
determined by the phase υ = ∠G0G = �(TG0G), and for ro waves
it is determined by the phase ρ = �(G0GRO).
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the special unitary group SU(2). This group is the universal
covering of the rotation group SO(3). The covering is two
sheeted [79–81].

B. Geometric phase

The parallel transport of a geometric object on a curved
surface rotates the object about its own axis. A classic example
is the Foucault pendulum with the rotation of its swing
plane caused by Earth’s daily rotation. Similarly, the parallel
transport of the polarization state on the PS curved surface
leads to the phase shift called the GP. It is caused by global
geometric characteristics, such as the curvature and the parallel
transport trajectory, and independent of local characteristics,
such as the speed of state movement along the trajectory.
There is a geometric formula for closed trajectories. Applied
to polarization it claims that GP β is equal to minus half the
area � encircled by the trajectory on PS:

β = −�/2. (28)

A rigorous proof is given in [6] using Stokes’ theorem.

C. Geometric calculation of the phase shift corresponding
to TSS for traveling wave

We apply the geometric formula to find the phase shift
of the traveling wave at the trajectory TT′ in Fig. 4. The
elliptical wave expressed by Eq. (8) is a superposition of o

and e waves with relevant RIs. The averaged RI should be
chosen in the form that takes into account the analog of the
Aharonov-Anandan dynamic phase [see Ref. [6], Eq. (5.19)]:

n̄ = n − δn cos 
, α = n̄k0L = σ − δ cos 
. (29)

The minus sign corresponds to the o wave. This RI normal-
ization reduces the PS rotation to parallel transport along the
great-circle trajectory.

Let the twist angle ϕ = π . Then � = 2ϕ = 2π makes one
turn on the PS “parallel” with latitude 
. The area between
the “equator” and this “parallel” is equal to the side surface
of a cylinder of unit radius and of height equal to sin 
 (see
Ref. [82], p. 260, Lambert cylindrical equal-area projection),

�(ϕ = π ) = 2π sin 
.

For an arbitrary twist angle,

�(ϕ) = 2ϕ sin 
. (30)

The total phase shift γ consists of the dynamic phase α and the
GP β: γ = α + β. The geometric formula (28) and equations
(29,30) give

γ = σ − δ cos 
 − ϕ sin 
.

Equations (12) and (15) produce a transformation δ = υ cos 
,
ϕ = υ sin 
. This transformation gives

γ = σ − υ(cos2 
 + sin2 
) = σ −
√

δ2 + ϕ2.

Indeed, the result coincides with the Mauguin formula (13).

D. Geometric calculation of the phase shift
corresponding to RSS for cavity wave

The Mauguin-Poincaré rolling cone method is easily
expanded to the Hopf bundle of PS. In fact, the generalization
is a consequence of the solid cone analogy. This generalization
makes it possible to find certain phase relations trigonomet-
rically. The phase integration along the trajectory RR′ corre-
sponds to the matrix multiplication of Eq. (4). Diagonalization
of Eq. (10) is a simplifying algebraic transition to the rotating
frame written as the product of three matrices. Geometrically,
it corresponds to the transition from the trajectory RR′ to the
chain of three arcs: RT-TT′-T′R′ [Fig. 4(b)], wherein the first
and the last arcs are to be chosen as geodesics. The great-circle
arc RT [see Fig. 5(a)] matches the parallel transport and the
GP corresponds to the Pancharatnam phase [4] without any
normalizing dynamic phase of Eq. (29).

During the passage of the distance L ahead through the
cavity the traveling to wave in rotating frame receives the
phase shift υ. Therefore, PS is rotated by the angle 2υ. After
the rotation the linear polarization R is returned back to the
“equator” at the point R′. It corresponds to reflection symmetry
of triangles OTR and O′T′R′. The mirror reflection corresponds
to the triangle reflection symmetry with respect to the RO arc
(improper rotation). The resultant GP shift of the ro wave
compared with that of the to wave accounts the triangle area
four times per loop cycle 4�(OTR) = 2βRSS.

The rolling cone method works even when the adiabatic
condition is violated. In [49] the nonuniform LC twist is
examined, for example, under electric voltage. However,
in the symmetric case for the cone opening angle 
(z) =

(L − z) the eigenwave preserves linear polarization on the
layer boundary. For practice, the linear polarization of the
transmitted light is advantageous, because of the reliable
blocking of transmission [83].

The account of mirror phase shift δμ by anisotropic
reflection is equivalent to a wave-plate action. On PS this
leads to an additional rotation of the RO arc by the angle of
δμ off the “equator.” Pythagorean theorem (18) for the right
spherical triangle OTR transforms to the cosine theorem (17)
for the angles of the spherical triangle. The point R leaves
the PS equator. It means that the corresponding transmission
peak becomes elliptically polarized. The superposition of
opposing traveling waves on a perfect cavity mirror remains
linearly polarized at δμ �= 0 only when σμ = πNμ/2 with
integer Nμ.

E. Connection between dispersion curve phases and PS angles

With increasing frequency the Mauguin cone rolling angle
2υ is increased uniformly. The to wave corresponds to the
Mauguin cone axis on PS. The point T is fixed, assuming
constant adiabatic parameter: 
(ω) ≈ const. Without chang-
ing the polarization, the to wave acquires a π phase between
the adjacent Gooch-Terry minima [see the section G1G3/2G2

of the dispersion curve at Fig. 2(b)]. The ro wave gains the
phase ρ (dispersion curve section G1RG2) which is less than
the phase υ by the area of a spherical triangle �(OTR) =
υ − ρ. During the passage of the Gooch-Terry maximum this
area has a critical value �(OTR) = 
 in accordance with
Eq. (24).
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The cathetus RO = � = 2ξ of the triangle OTR is given by
Napier’s rules for right spherical triangles [81]:

tan � = − sin 
 tan υ.

This equation determines the deflection angle ξ of the bound-
ary ro-wave linear polarization from the LC director (Fig. 3).
Figure 4(b) shows the arc TR rotating when υ increases.
The point R moves nonuniformly along the PS equator.
The movement is faster near the Gooch-Terry maximum. In
adiabatic approximation 
 	 π/2 the point R jumps at the
Gooch-Terry maximum so that ξ ≈ 0 for the ro wave and
ξ ≈ π/2 for the re wave.

Exact correspondence between optical wave phases and
characteristic space angles provides a visual support and a
qualitative understanding of the phenomenon supporting the
validity of the obtained solution.

F. Intermediate optical response presumption

The motivation for this study was the debate about the
direction of the transmission peak SS in a TN layer. The
intermediate optical response presumption was formulated
for an anisotropic medium whose effective RI is between the
ordinary and extraordinary RI,

no < ñ < ne. (31)

Here are a few abstract examples supporting the intermediate
optical response presumption.

(1) The average RI of a nematic in the isotropic phase
is [1,75]

n2
iso = (

n2
e + 2n2

o

)/
3.

(2) In a homogeneous, uniaxially anisotropic medium, the
extraordinary light wave propagating at an angle θ to the
optical axis has the following RI [Ref. [1], Eq. (11.6)]:

ne(θ ) = none(0)/
√

n2
e(0) cos2 θ + n2

o sin2 θ.

(3) The thin sublayer of the TN layer has effective RI
according to the normalization (29).

A nonadditive response of a slab of sublayers leads to the
GP (28). As a result, the Mauguin formula (14) contradicts the
intermediate optical response presumption (31):

nte,to = n ±
√

δn2 + (ϕ/k0L)2, nto < no < ne < nte.

The stated contradiction admits an experimental test. With
an increase in the effective RI (i.e., increase in the optical
length of the cavity), transmission peaks are shifted to the
red. For the o wave in untwisted structure the effective RI is
equal to the ordinary RI. According to the intermediate optical
response presumption [Eq. (31)] the twisted effective RI shifts
towards the extraordinary RI; in other words, the effective RI
increases. This predicts the redshift �λTSS > 0 for spectral
peaks. In contrast, the Mauguin formula predicts the blueshift
�λTSS < 0 (27).

IV. EXPERIMENT

A. LC orientation

An experimental study of the shift of the o-polarized
spectral transmission peaks to shorter wavelengths was carried
out inside a LC-FPC. The Fabry-Pérot cavity consisting of
two dielectric mirrors (Fig. 6, bottom row) is treated as a LC
cell. It was filled with the nematic LC 4-methoxybenzylidene-
4′-n-butylaniline (MBBA) doped with the cationic surfactant
cethyltrimethyl ammonium bromide (CTAB) in the weight
ratio 1:0.003. The cavity gap is 7 μm. CTAB molecules
within MBBA dissociate into Br anions and surface-active
CTA cations. The latter are adsorbed at the surfaces of aligning
layers and, at the sufficient concentration, can form a layer
specifying the homeotropic coupling condition for nematic
molecules [84,85].

A multilayer mirror coating consists of six layers of
zirconium dioxide (ZrO2) with RI of 2.04 and a thickness
of 55 nm and five layers of silicon dioxide (SiO2) with RI of
1.45 and a thickness of 102 nm alternately deposited on the
surface of a quartz substrate. The alternating layers produce the
reflection band in the range of 420–610 nm. Thin (∼150 nm)
ITO electrodes were deposited on the upper layers of ZrO2

to apply the electric field normally to the LC-FPC mirrors.
Electrodes were covered with different polymeric alignment
films by spin-coating to implement the initial homeoplanar
director orientation [Fig. 6(a), bottom row]. The top substrate
was covered with a planar-orienting film of pure polyvinyl
alcohol (PVA). The bottom substrate was covered with a PVA
film doped with glycerin (Gl) compound in the weight ratio
1:0.61. With the utilized CTAB concentration the surfactant
ion molecules were adsorbed on the PVA-Gl film. The formed
layer shields the planar-orienting effect of the polymer coating
and provides the homeotropic anchoring for MBBA. Polymer
films on both dielectric mirrors were rubbed unidirectionally
to define the axis of easy orientation. The angle between the
rubbing directions at the top (R1) and bottom (R2) mirrors
is 90◦.

Inside the LC-FPC cell at constant voltage value U = 4 V,
the orientation transition from homeoplanar to twist director
configuration is induced by ionic modification of surface an-
choring [86]. This transition is accompanied by a modification
in polarizing microscope optical texture of the LC-FPC cell
under the parallel- and crossed-polarizer scheme (Fig. 6, top
row and middle row, respectively). For example, under crossed
polarizers the optical texture of LC-FPC cells in the initial
state is uniformly dark when the R1 direction coincides with
the transmission axis of the polarizer [Fig. 6(a), middle row].
The light transmission is increased when the voltage is applied
and the twist-configured FPC (TN-FPC) is formed [Fig. 6(b),
middle row]. However, under the parallel-polarizer scheme the
TN-FPC transmittance is low [Fig. 6(b), upper row] due to the
rotation of the polarization plane of linearly polarized light at
an angle close to 90◦ after passing the TN layer.

The experimental scheme excludes a significant impact of
parasitic factors on the shift. The structure is twisted uniformly,
because every sublayer has constant twist torque created by
different rubbing orientations. The twist structure is under the
voltage of 4 V. However, this does not lead to any deformation
of the structure. First, in the volume of the cell the voltage is
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FIG. 6. (Color online) Microphotographs of optical textures of LC-FPC under the parallel-polarizer scheme (top row) and crossed polarizers
(middle row) and the respective diagrams of the LC director configurations (bottom row). (a) Homeoplanar orientation at U = 0 V; (b) twist
orientation at U = 4 V. Polarizer (P) and analyzer (A) directions are represented by the double arrows. R1 and R2 are rubbing directions of the
top and bottom mirrors, respectively.

partially compensated by surface charges. Second, MBBA is
oriented transversely to electric field.

B. Cavity and its spectra

Polarized transmission spectra of LC-FPC with two dif-
ferent configurations of MBBA director for normally incident
light were measured using an Ocean Optics HR4000 spec-
trometer equipped with fiber optics (Fig. 7). The LC-FPC
sample was placed inside the optical channel with planar
orientant (R1 || x) at the input mirror. A Glan prism (P)
was used as a polarizing element with the linear polarization
along the y axis (i.e., orthogonal to the director on the
input mirror). In this experimental scheme the o-polarized
transmission spectrum was measured regardless of structural
transformations in the nematic volume. Spectra were recorded
at a fixed temperature of 23.0◦ C. Thermal stabilization error

was no more than ±0.2◦ C. The voltage was generated by a
power supply (AKTAKOM ATH-1236).

C. Comparison of experiment, simulation,
and analytic formulas

Three measurements were averaged to calculate the exper-
imental SS (Fig. 8). The experimental resolution of 0.25 nm
was improved by fitting spectral peaks by Voigt contours. The
confidence interval was calculated as the corrected sample
standard deviation multiplied by the Student coefficient with
95% reliability: t0.05,2 = 4.3027.

The Berreman method [37,38] was used for numerical
simulations. The method evaluates polarization vectors and
transfer matrices of dimension 4 to take into account the weak
reflection waves arising in the LC bulk (multiple anisotropic
reflections between the sublayers). The TN layer was divided
into 200 sublayers and the calculated spectral resolution
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FIG. 7. (Color online) Experimental setup for measurement of
polarized transmittance spectra of LC-FPC. C, fiber collimator; GP,
Glan prism; PD, photodetector.

was 0.01 nm. Some parameters were considerably tuned to
match the experimental spectra. The thicknesses and RIs of
amorphous layers constituting the dielectric mirror were taken
for SiO2, 83 nm and 1.45; for ZrO2, 66 nm and 2.02; for each
ITO layer, 117 nm and 1.888 58 + 0.022i taking the absorption
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FIG. 8. (Color online) Ordinary-polarized LC-FPC spectrum (a)
and the SS of transmission peaks (b). •, experimental shift values; ◦,
calculated shift values obtained by direct numerical simulation using
the Berreman method; solid curve, analytical shift calculated from
Eq. (25) obtained by the Jones method; dashed curve, the shift �λTSS

calculated without mirror effect from Eq. (27). The parameters of the
rightmost peak with λ = 579.1 nm were taken to calculate Fig. 4.
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FIG. 9. (Color online) Magnified experimental (a) and calculated
(b) transmittance spectral peaks for homeoplanar [blue (dark gray)]
and twisted [magenta (light gray)] configurations in LC-FPC. The
twist leads to shorter wavelength shifts.

into account; for the substrate RI, 1.45 and for the PVA RI,
1.515; two thicknesses of PVA layers, 300 and 600 nm; for
MBBA extraordinary RI: 1.737 and ordinary RI, 1.549, both
with RI imaginary part, 0.000 78i. The thickness of MBBA
layer was 7980 nm; the twist angle was 80◦.

The material dispersion gave some minor changes in the
spectra and the shift. The most notable changes were the
absorption dispersion and the change in MBBA layer thickness
by 40 nm. Therefore, the spectra illustrated in Figs. 8 and 9
were calculated assuming no material dispersion.

Experimental transmission peaks are broadened no more
than 2 times larger than the calculated peaks (Fig. 9). This
was achieved by additional flatness tuning of the cavity.
Comparison of experimental spectra with simulations shows
the transmission peaks shift to shorter wavelengths for the
twisted configuration. The shift is less than the half width at
half maximum of a peak. Three peaks in the range of 480–
500 nm have minimal intensity and maximal shift dispersion.
However, all 14 points fit satisfactorily into the simulated
dependence curve.

Figure 8(b) shows by dots and circles the experimental and
calculated values of the SS, respectively. Analytical Eqs. (25)
and (27) are shown by the solid curve and the dotted curve,
respectively. The reflection phase shift leads to simultaneous
displacement of all the points along the solid curve. The latter
analytic curve is affected by the reflection phase shift only near
Gooch-Terry maxima. The experimental spectrum contains no

052504-11



IVAN V. TIMOFEEV et al. PHYSICAL REVIEW E 92, 052504 (2015)

Gooch-Terry maxima. So in analytical equations the reflection
anisotropy was ignored δμ = 0.

The analytic formula (25) slightly overestimates the shift.
There are several possible reasons for this distinction. First,
the difference of PVA layer thicknesses on mirrors leads to
some error. Second, weak reflection waves arising in the LC
bulk produce the difference between the Berreman and the
Jones SSs. The effective Jones RI (14) is commonly used
for the TN LC where the helical pitch is much larger than
the wavelength [21]. The formula (14) has been general-
ized [61,64,87,88] for cholesteric LC where the helical pitch
is of the same order with the wavelength. The wave vector for
the Berreman method:

q± = ±
√

k2
ϕ + n2k2

0 ± k0

√
4k2

ϕn2 + (2nδn + δn2)2k2
0 .

It gives the effective Berreman RI:

n±
B = ±

√
n2

ϕ + n2 ±
√

4n2
ϕn2 + (2nδn + δn2)2. (32)

The Berreman RI (32) and the Jones RI (14) contrast is evident
in the graph scale despite the reasonable approximation ϕ 	
δ 	 σ .

V. CONCLUDING REMARKS

To the best of our knowledge, the Mauguin phase shift
formula (13) has had only implicit and indirect confir-
mations in polarization measurements. Such measurements
are, for example, the measurement of spectral positions of
Gooch-Terry minima and the optical activity measurement of
cholesteric LC [75]. As usual, in commercial TN cells TSS
does not exceed 1 nm in accordance with Eq. (27). TSS
is really hard to ascertain experimentally. For example, in
the experimental spectra of TN-FPC with twist-homeotropic
electric switching, the o-polarized SS, as reported in [58],
was much higher than TSS Eq. (27). The crucial factor was
reorientation of the parietal LC sublayers. They were not
reoriented homeotropically up to the cell breakdown voltage.

The reported shift in TN-FPC can be observed directly
without any polarizers. The required measurement accuracy is
achieved due to multiple interference in the cavity. The main
drawback of the presented scheme is that untwisted structure
maintains a constant RI for the o-polarized light only. The
e-polarized SS may be measured in the experimental scheme
with the twist-planar to homogeneous-planar transition, which
could be achieved using photoalignment material with re-
versible intermolecular bonds [89,90].

The avoided crossing SS caused by the mirror reflection
mode coupling, the above-mentioned RSS, was described
analytically and experimentally in the uniformly twisted
structure. The analytical expression (26) for RSS near the

Gooch-Terry maximum looks much easier than the one pub-
lished before [34]. A generalized Mauguin-Poincaré rolling
cone method allowed us to solve the problem geometrically,
independently of the Jones and Berreman matrix formalisms.

The SS of transmission peaks should not be confused with
a frequency shift or a frequency conversion. In the stationary
linear problem the light frequency is not converted. Also, we
claim that the TSS characterizes not entirely the cavity but
namely the twisted layer itself. The cavity just facilitates the
measurement in that the twisted layer does not generate any
transmission peaks. So what is actually shifted while twisting
the layer? Obviously, the eigenwave phase is shifted when
going out of the twisted layer. Therefore, the effective RI
varies. This optical response can be measured without a cavity.
For example, a polarization grating has considerable sensitivity
to a minute change in RI, which permits the experimental
confirmation of the described phenomenon.

The intermediate optical response presumption was formu-
lated to determine the extreme values of the optical response
of the complex medium. Despite the apparent evidence, this
presumption may be violated. A well-known example is a
composite of a few optical media with the inhomogeneity
scale much smaller than the wavelength. Its resonant optical
response may exceed maximal values for every component.
This intermediate optical response violation for composites
is explained by the Clausius-Mossotti contribution of spatial
boundaries between the components [91,92]. Another inter-
mediate optical response violation for a twisted anisotropic
medium is shown to be due to the GP contribution. This tiny GP
contribution should not be confused with the GP of the zeroth-
order adiabatic approximation. The last one is responsible for
π -phase polarization conflict in the π -twisted LC cell [11].
A visual GP representation is speculated as the area covered
by the polarization trajectory on PS. Contributions of TSS
and RSS are related to areas of spherical rectangles and
triangles.

The revealed tiny SS in TN-FPC exists in an arbitrary
anisotropic chiral medium, not only in the TN layer. Without
a doubt, a vast class of twist-polarization devices in high-
precision engineering applications, such as multiplexers, 3D
displays, optical tweezers, holographic data storage, and
diffractive optics must be accounted for.
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