711 research outputs found

    Effects of C282Y, H63D, and S65C HFE gene mutations, diet, and life-style factors on iron status in a general Mediterranean population from Tarragona, Spain

    Get PDF
    Mutations in the HFE gene result in iron overload and can produce hereditary hemochromatosis (HH), a disorder of iron metabolism characterized by increased intestinal iron absorption. Dietary quality, alcoholism and other life-style factors can increase the risk of iron overload, especially among genetically at risk populations. Polymorphisms of the HFE gene (C282Y, H63D and S65C) were measured together with serum ferritin (SF), transferrin saturation (TS) and hemoglobin, to measure iron status, in randomly-selected healthy subjects living in the Spanish Mediterranean coast (n = 815; 425 females, 390 males), 18 to 75 years of age. The intake of dietary components that affect iron absorption was calculated from 3-day dietary records. The presence of C282Y/H63D compound heterozygote that had a prevalence of 2.8% in males and 1.2% in females was associated with an elevated TS and SF. No subject was homozygous for C282Y or S65C. The C282Y heterozygote, H63D heterozygote and homozygote and H63D/S65C compound heterozygote genotypes were associated with increased TS relative to the wild type in the general population. These genotypes together with the alcohol and iron intake increase the indicators of iron status, while calcium intake decreases them. We did not observe any affect of the S65C heterozygote genotype on these levels. All the HFE genotypes except for the S65C heterozygote together with the alcohol, iron and calcium intake affect the indicators of iron status. The C282Y/H63D compound heterozygote genotype has the higher phenotypic expression in our Spanish Mediterranean population

    The role of the cerebellum in adaptation: ALE meta‐analyses on sensory feedback error

    Get PDF
    It is widely accepted that unexpected sensory consequences of self‐action engage the cerebellum. However, we currently lack consensus on where in the cerebellum, we find fine‐grained differentiation to unexpected sensory feedback. This may result from methodological diversity in task‐based human neuroimaging studies that experimentally alter the quality of self‐generated sensory feedback. We gathered existing studies that manipulated sensory feedback using a variety of methodological approaches and performed activation likelihood estimation (ALE) meta‐analyses. Only half of these studies reported cerebellar activation with considerable variation in spatial location. Consequently, ALE analyses did not reveal significantly increased likelihood of activation in the cerebellum despite the broad scientific consensus of the cerebellum's involvement. In light of the high degree of methodological variability in published studies, we tested for statistical dependence between methodological factors that varied across the published studies. Experiments that elicited an adaptive response to continuously altered sensory feedback more frequently reported activation in the cerebellum than those experiments that did not induce adaptation. These findings may explain the surprisingly low rate of significant cerebellar activation across brain imaging studies investigating unexpected sensory feedback. Furthermore, limitations of functional magnetic resonance imaging to probe the cerebellum could play a role as climbing fiber activity associated with feedback error processing may not be captured by it. We provide methodological recommendations that may guide future studies

    A connectome of the adult drosophila central brain

    Get PDF
    The neural circuits responsible for behavior remain largely unknown. Previous efforts have reconstructed the complete circuits of small animals, with hundreds of neurons, and selected circuits for larger animals. Here we (the FlyEM project at Janelia and collaborators at Google) summarize new methods and present the complete circuitry of a large fraction of the brain of a much more complex animal, the fruit fly Drosophila melanogaster. Improved methods include new procedures to prepare, image, align, segment, find synapses, and proofread such large data sets; new methods that define cell types based on connectivity in addition to morphology; and new methods to simplify access to a large and evolving data set. From the resulting data we derive a better definition of computational compartments and their connections; an exhaustive atlas of cell examples and types, many of them novel; detailed circuits for most of the central brain; and exploration of the statistics and structure of different brain compartments, and the brain as a whole. We make the data public, with a web site and resources specifically designed to make it easy to explore, for all levels of expertise from the expert to the merely curious. The public availability of these data, and the simplified means to access it, dramatically reduces the effort needed to answer typical circuit questions, such as the identity of upstream and downstream neural partners, the circuitry of brain regions, and to link the neurons defined by our analysis with genetic reagents that can be used to study their functions. Note: In the next few weeks, we will release a series of papers with more involved discussions. One paper will detail the hemibrain reconstruction with more extensive analysis and interpretation made possible by this dense connectome. Another paper will explore the central complex, a brain region involved in navigation, motor control, and sleep. A final paper will present insights from the mushroom body, a center of multimodal associative learning in the fly brain

    A connectome and analysis of the adult Drosophila central brain

    Get PDF
    The neural circuits responsible for animal behavior remain largely unknown. We summarize new methods and present the circuitry of a large fraction of the brain of the fruit fly Drosophila melanogaster. Improved methods include new procedures to prepare, image, align, segment, find synapses in, and proofread such large data sets. We define cell types, refine computational compartments, and provide an exhaustive atlas of cell examples and types, many of them novel. We provide detailed circuits consisting of neurons and their chemical synapses for most of the central brain. We make the data public and simplify access, reducing the effort needed to answer circuit questions, and provide procedures linking the neurons defined by our analysis with genetic reagents. Biologically, we examine distributions of connection strengths, neural motifs on different scales, electrical consequences of compartmentalization, and evidence that maximizing packing density is an important criterion in the evolution of the fly’s brain

    Paleoclimate Implications for Human-Made Climate Change

    Full text link
    Paleoclimate data help us assess climate sensitivity and potential human-made climate effects. We conclude that Earth in the warmest interglacial periods of the past million years was less than 1{\deg}C warmer than in the Holocene. Polar warmth in these interglacials and in the Pliocene does not imply that a substantial cushion remains between today's climate and dangerous warming, but rather that Earth is poised to experience strong amplifying polar feedbacks in response to moderate global warming. Thus goals to limit human-made warming to 2{\deg}C are not sufficient - they are prescriptions for disaster. Ice sheet disintegration is nonlinear, spurred by amplifying feedbacks. We suggest that ice sheet mass loss, if warming continues unabated, will be characterized better by a doubling time for mass loss rate than by a linear trend. Satellite gravity data, though too brief to be conclusive, are consistent with a doubling time of 10 years or less, implying the possibility of multi-meter sea level rise this century. Observed accelerating ice sheet mass loss supports our conclusion that Earth's temperature now exceeds the mean Holocene value. Rapid reduction of fossil fuel emissions is required for humanity to succeed in preserving a planet resembling the one on which civilization developed.Comment: 32 pages, 9 figures; final version accepted for publication in "Climate Change at the Eve of the Second Decade of the Century: Inferences from Paleoclimate and Regional Aspects: Proceedings of Milutin Milankovitch 130th Anniversary Symposium" (eds. Berger, Mesinger and Sijaci

    Weaned age variation in the Virunga mountain gorillas (Gorilla beringei beringei)

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00265-016-2066-6Weaning marks an important milestone during life history in mammals indicating nutritional independence from the mother. Age at weaning is a key measure of maternal investment and care, affecting female reproductive rates, offspring survival and ultimately the viability of a population. Factors explaining weaned age variation in the endangered mountain gorilla are not yet well understood. This study investigated the impact of group size, group type (one-male versus multi-male), offspring sex, as well as maternal age, rank, and parity on weaned age variation in the Virunga mountain gorilla population. The status of nutritional independence was established in 69 offspring using long-term suckling observations. A Cox-regression with mixed effects was applied to model weaned age and its relationship with covariates. Findings indicate that offspring in one-male groups are more likely to be weaned earlier than offspring in multi-male groups, which may reflect a female reproductive strategy to reduce higher risk of infanticide in one-male groups. Inferior milk production capacity and conflicting resource allocation between their own and offspring growth may explain later weaning in primiparous mothers compared to multiparous mothers. Sex-biased weaned age related to maternal condition defined by parity, rank, and maternal age will be discussed in the light of the Trivers-Willard hypothesis. Long-term demographic records revealed no disadvantage of early weaning for mother or offspring. Population growth and two peaks in weaned age within the Virunga population encourage future studies on the potential impact of bamboo shoots as a weaning food and other environmental factors on weaning

    Current gene therapy using viral vectors for chronic pain

    Get PDF
    The complexity of chronic pain and the challenges of pharmacotherapy highlight the importance of development of new approaches to pain management. Gene therapy approaches may be complementary to pharmacotherapy for several advantages. Gene therapy strategies may target specific chronic pain mechanisms in a tissue-specific manner. The present collection of articles features distinct gene therapy approaches targeting specific mechanisms identified as important in the specific pain conditions. Dr. Fairbanks group describes commonly used gene therapeutics (herpes simplex viral vector (HSV) and adeno-associated viral vector (AAV)), and addresses biodistribution and potential neurotoxicity in pre-clinical models of vector delivery. Dr. Tao group addresses that downregulation of a voltage-gated potassium channel (Kv1.2) contributes to the maintenance of neuropathic pain. Alleviation of chronic pain through restoring Kv1.2 expression in sensory neurons is presented in this review. Drs Goins and Kinchington group describes a strategy to use the replication defective HSV vector to deliver two different gene products (enkephalin and TNF soluble receptor) for the treatment of post-herpetic neuralgia. Dr. Hao group addresses the observation that the pro-inflammatory cytokines are an important shared mechanism underlying both neuropathic pain and the development of opioid analgesic tolerance and withdrawal. The use of gene therapy strategies to enhance expression of the anti-pro-inflammatory cytokines is summarized. Development of multiple gene therapy strategies may have the benefit of targeting specific pathologies associated with distinct chronic pain conditions (by Guest Editors, Drs. C. Fairbanks and S. Hao)
    corecore