60 research outputs found

    The influence of silicon on topographical parameters and mechanical properties of the Ti-Ni-Ta-Si surface alloy synthesized on the NiTi-substrates

    Get PDF
    This work comprises a study of the effect of silicon on the topographical parameters and mechanical properties of the Ti-Ni-Ta-Si surface alloy (SA) synthesized on the NiTisubstrates by the additive thin-film electron-beam method. It was found that the roughness of [Ti-Ni-Ta-Si]SA (~0.095 μm) has a lower value than in [Ti-Ni-Ta]SA (~0.195 μm). The values of the yield strength σy in the surface layers of [Ti-Ni-Ta-Si]SA and [Ti-Ni-Ta]SA are characterized by a gradient decrease from ~4.2 GPa up to ~1.2 and ~1.7 GPa, respectively. During the indentation, evaluation of the deformation behavior (recovered elastic – εelast, and superelastic – εSE, residual plastic – εplast deformation) showed, that in surface layers of [Ti-Ni-Ta-Si]SA and [Ti-Ni-Ta]SA due to an increase of εplast, there was a decrease in εSE up to ~35 and ~22%, respectively (for the NiTi-initial εSE ≈ 38%)

    Paraconductivity of K-doped SrFe2As2 superconductor

    Full text link
    Paraconductivity of the optimally K-doped SrFe2As2 superconductor is investigated within existing fluctuation mechanisms. The in-plane excess conductivity has been measured in high quality single crystals, with a sharp superconducting transition at Tc=35.5K and a transition width less than 0.3K. The data have been also acquired in external magnetic field up to 14T. We show that the fluctuation conductivity data in zero field and for temperatures close to Tc, can be explained within a three-dimensional Lawrence-Doniach theory, with a negligible Maki-Thompson contribution. In the presence of the magnetic field, it is shown that paraconductivity obeys the three-dimensional Ullah-Dorsey scaling law, above 2T and for H||c. The estimated upper critical field and the coherence length nicely agree with the available experimental data.Comment: 12 pages, 5 figure

    Semiconductor Spintronics

    Full text link
    Spintronics refers commonly to phenomena in which the spin of electrons in a solid state environment plays the determining role. In a more narrow sense spintronics is an emerging research field of electronics: spintronics devices are based on a spin control of electronics, or on an electrical and optical control of spin or magnetism. This review presents selected themes of semiconductor spintronics, introducing important concepts in spin transport, spin injection, Silsbee-Johnson spin-charge coupling, and spindependent tunneling, as well as spin relaxation and spin dynamics. The most fundamental spin-dependent nteraction in nonmagnetic semiconductors is spin-orbit coupling. Depending on the crystal symmetries of the material, as well as on the structural properties of semiconductor based heterostructures, the spin-orbit coupling takes on different functional forms, giving a nice playground of effective spin-orbit Hamiltonians. The effective Hamiltonians for the most relevant classes of materials and heterostructures are derived here from realistic electronic band structure descriptions. Most semiconductor device systems are still theoretical concepts, waiting for experimental demonstrations. A review of selected proposed, and a few demonstrated devices is presented, with detailed description of two important classes: magnetic resonant tunnel structures and bipolar magnetic diodes and transistors. In most cases the presentation is of tutorial style, introducing the essential theoretical formalism at an accessible level, with case-study-like illustrations of actual experimental results, as well as with brief reviews of relevant recent achievements in the field.Comment: tutorial review; 342 pages, 132 figure

    Minimization of logical schemes of algorithms

    No full text

    Development of the Dankov source of dolomite

    No full text

    Structures of microprograms and computer control automata

    No full text
    corecore