90,291 research outputs found

    Ginzburg - Landau Expansion in BCS - BEC Crossover Region of Disordered Attractive Hubbard Model

    Get PDF
    We have studied disorder effects on the coefficients of Ginzburg - Landau (GL) expansion for attractive Hubbard model within the generalized DMFT+Sigma approximation for the wide region of the values of attractive potential U - from the weak-coupling limit, where superconductivity is described by BCS model, towards the strong coupling, where superconducting transition is related to Bose - Einstein condensation (BEC) of compact Cooper pairs. For the case of semi-elliptic initial density of states disorder influence on the coefficients A and B before the square and the fourth power of the order parameter is universal for at all values of electronic correlations and is related only to the widening of the initial conduction band (density of states) by disorder. Similar universal behavior is valid for superconducting critical temperature T_c (the generalized Anderson theorem) and specific heat discontinuity at the transition. This universality is absent for the coefficient C before the gradient term, which in accordance with the standard theory of "dirty" superconductors is strongly suppressed by disorder in the weak-coupling region, but can slightly grow in BCS - BEC crossover region, becoming almost independent of disorder in the strong coupling region. This leads to rather weak disorder dependence of the penetration depth and coherence length, as well as the slope of the upper critical magnetic field at T_c, in BCS - BEC crossover and strong coupling regions.Comment: 22 pages, 12 figures, as published in I.M. Lifshitz centenary issue of Low Temperature Physic

    Transparent Nuclei and Deuteron-Gold Collisions at RHIC

    Full text link
    The current normalization of the cross section of inclusive high-pT particle production in deuteron-gold collisions measured RHIC relies on Glauber calculations for the inelastic d-Au cross section. These calculations should be corrected for diffraction. Moreover, they miss the Gribov's inelastic shadowing which makes nuclei more transparent (color transparency). The magnitude of this effect rises with energy and it may dramatically affect the normalization of the RHIC data. We evaluate these corrections employing the light-cone dipole formalism and found a rather modest corrections for the current normalization of the d-Au data. The results of experiments insensitive to diffraction (PHENIX, PHOBOS) should be renormalized by about 20% down, while those which include diffraction (STAR), by only 10%. Such a correction completely eliminates the Cronin enhancement in the PHENIX data for pions. The largest theoretical uncertainty comes from the part of the inelastic shadowing which is related to diffractive gluon radiation, or gluon shadowing. Our estimate is adjusted to data for the triple-Pomeron coupling, however, other models do not have such a restrictions and predict much stronger gluon shadowing. Therefore, the current data for high-pT hadron production in d-Au collisions at RHIC cannot exclude in a model independent way the possibility if initial state suppression proposed by Kharzeev-Levin-McLerran. Probably the only way to settle this uncertainty is a direct measurement of the inelastic d-Au cross sections at RHIC. Also d-Au collisions with a tagged spectator nucleon may serve as a sensitive probe for nuclear transparency and inelastic shadowing. We found an illuminating quantum-mechanical effect: the nucleus acts like a lens focusing spectators into a very narrow cone.Comment: Latex 50 pages. Based on lectures given by the author at Workshop on High-pT Correlations at RHIC, Columbia University, May-June, 2003. The version to appear in PR

    Novel approach to a perfect lens

    Full text link
    Within the framework of an exact analytical solution of Maxwell equations in a space domain, it is shown that optical scheme based on a slab with negative refractive index (n=1n=-1) (Veselago lens or Pendry lens) does not possess focusing properties in the usual sense . In fact, the energy in such systems does not go from object to its "image", but from object and its "image" to an intersection point inside a metamaterial layer, or vice versa. A possibility of applying this phenomenon to a creation of entangled states of two atoms is discussed.Comment: 4 pages, 6 figure

    Polarization effects in the reaction e++eρ++ρe^++e^-\to \rho^+ +\rho^- and determination of the ρ\rho - meson form factors in the time--like region

    Full text link
    The electron positron annihilation reaction into four pion production has been studied, through the channel e++eρˉ+ρe^++e^-\to \bar \rho+\rho . The differential (and total) cross sections and various polarization observables for this reaction have been calculated in terms of the electromagnetic form factors of the corresponding γρρ\gamma^*\rho\rho current. The elements of the spin--density matrix of the ρ\rho -meson were also calculated. Numerical estimations have been done, with the help of phenomenological form factors obtained in the space--like region of the momentum transfer squared and analytically extended to the time-like region.Comment: 19 pages, 2 figures, to appear in Phys Rev

    Extended DFT+U+V method with on-site and inter-site electronic interactions

    Full text link
    In this article we introduce a generalization of the popular DFT+U method based on the extended Hubbard model that includes on-site and inter-site electronic interactions. The novel corrective Hamiltonian is designed to study systems for which electrons are not completely localized on atomic states (according to the general scheme of Mott localization) and hybridization between orbitals from different sites plays an important role. The application of the extended functional to archetypal Mott - charge-transfer (NiO) and covalently bonded insulators (Si and GaAs) demonstrates its accuracy and versatility and the possibility to obtain a unifying and equally accurate description for a broad range of very diverse systems

    Correlational Origin of the Roton Minimum

    Full text link
    We present compelling evidence supporting the conjecture that the origin of the roton in Bose-condensed systems arises from strong correlations between the constituent particles. By studying the two dimensional bosonic dipole systems a paradigm, we find that classical molecular dynamics (MD) simulations provide a faithful representation of the dispersion relation for a low- temperature quantum system. The MD simulations allow one to examine the effect of coupling strength on the formation of the roton minimum and to demonstrate that it is always generated at a sufficiently high enough coupling. Moreover, the classical images of the roton-roton, roton-maxon, etc. states also appear in the MD simulation spectra as a consequence of the strong coupling.Comment: 7 pages, 4 figure

    Epizootic pertussis focus of hamadryad baboons

    Get PDF
    The absence of an adequate experimental animal model makes difficult study of immunity against whooping cough and its pathogenesis. Experimental whooping cough reported by us earlier in pubescent non-human primates of the Old World was accompanied by specific clinical and laboratory marks in the absence of cough. The possibility of pertussis modelling while experimental whooping cough in impuberal hamadryad baboons was investigated. In the process of selection of monkeys for the further studies for perfecting of experimental model for pertussis research unexpectedly were detected specific pertussis antibodies in impuberal hamadryad baboons.The aim of the study: revealing of source of infection and transmission of pertussis to hamadryad baboons and investigation of response of antibody-positive impuberal hamadryad baboons to secondary contagion by B. pertussis bacteria while experimental infection.Results. 18 veterinary checked, somatically healthy hamadryad baboons of various gender managed in two neighboring cages. Specific pertussis IgM and IgG antibodies were found in blood serum of all the animals and one of the monkey keepers. By real-time PCR in nasopharyngeal swabs of the monkey keeper and three 7- and 9-month-old hamadryad baboons were registered single B. pertussis genom equivalents. Seropositive impuberal hamadryad baboons were experimentally challenged by virulent B. pertussis 475 strain. Quantity of B. pertussis genom equivalents and percentage of IgM and IgG antibodies in impuberal hamadryad baboons after experimental infection were detected. These results were comparable with such received after secondary experimental challenge of monkeys by B. pertussis. Humoral immuneresponse was characterized by booster effect and rapid B. pertussis elimination.Conclusion. The case of transmission of B.pertussis bacteria to hamadryad baboons by natural contagion and epizootic focus of pertussis in apery conditions were registered. In dynamics of immune response and level of bacterial load in experimentally infected impuberal and pubescent hamadryad baboons were not revealed significant differences. The possibility of asymptomatic B.pertussis transmission from man to monkey and from monkey to man without definitive spasmodic cough was reviewed. Pertussis research perspectives using experimental model of non-human primates of the Old World were marked

    Real and virtual photons in an external constant electromagnetic field of most general form

    Full text link
    The photon behavior in an arbitrary superposition of constant magnetic and electric fields is considered on most general grounds basing on the first principles like Lorentz- gauge- charge- and parity-invariance. We make model- and approximation-independent, but still rather informative, statements about the behavior that the requirement of causal propagation prescribes to massive and massless branches of dispersion curves, and describe the way the eigenmodes are polarized. We find, as a consequence of Hermiticity in the transparency domain, that adding a smaller electric field to a strong magnetic field in parallel to the latter causes enhancement of birefringence. We find the magnetic field produced by a point electric charge far from it (a manifestation of magneto-electric phenomenon). We establish degeneracies of the polarization tensor that (under special kinematic conditions) occur due to space-time symmetries of the vacuum left after the external field is imposed.Comment: 30 pages, 1 figure, 57 equations, reference list of 38 item
    corecore