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We have studied disorder effects on the coefficients of Ginzburg–Landau expansion for attractive Hubbard mod-
el within the generalized DMFT+Σ approximation for the wide region of the values of attractive potential U — 
from the weak-coupling limit, where superconductivity is described by BCS model, towards the strong coupling, 
where superconducting transition is related to Bose–Einstein condensation (BEC) of compact Cooper pairs. For 
the case of semi-elliptic initial density of states disorder influence on the coefficients A and B before the square 
and the fourth power of the order parameter is universal for at all values of electronic correlations and is related 
only to the widening of the initial conduction band (density of states) by disorder. Similar universal behavior is 
valid for superconducting critical temperature Tc (the generalized Anderson theorem) and specific heat disconti-
nuity at the transition. This universality is absent for the coefficient C before the gradient term, which in accord-
ance with the standard theory of “dirty” superconductors is strongly suppressed by disorder in the weak-coupling 
region, but can slightly grow in BCS–BEC crossover region, becoming almost independent of disorder in the strong 
coupling region. This leads to rather weak disorder dependence of the penetration depth and coherence length, as 
well as the slope of the upper critical magnetic field at Tc, in BCS–BEC crossover and strong coupling regions. 

PACS: 71.10.Fd Lattice fermion models (Hubbard model, etc.); 
74.20.–z Theories and models of superconducting state; 
74.20.Mn Nonconventional mechanisms. 

Keywords: Ginzburg–Landau expansion, Hubbard model, BCS model. 
 

1. Introduction 

Ilya Mikhailovich Lifshitz was one of the creators of the 
modern theory of disordered systems [1]. Among his numer-
ous contributions in this field we only mention the general 
formulation of the concept of self-averaging [2] and the meth-
od of optimal fluctuation for the description of “Lifshitz tails” 
in the electron density of states [3]. These ideas and approach-
es are widely used now in many fields of the theory of disor-
dered systems, even those which initially were outside the 
scope of his personal scientific interests. 

The studies of disorder effects in superconductors have 
a rather long history. The pioneer works by Abrikosov and 
Gor’kov [4–6] and Anderson [7] had been devoted to the 
limit of weakly disordered metal ( 1Fp l >> , where Fp  is 
Fermi momentum and l  is the mean free path) and weakly 
coupled superconductors, well described by BCS theory [8]. 

The notorious Anderson theorem [7,8] on cT  of supercon-
ductors with “normal” (spin independent) disorder was 
proved in this limit under the assumption of self-averaging 
superconducting order-parameter [8–10]. The generaliza-
tions for the case of strong enough disorder ( 1Fp l  ) were 
also mainly done under the same assumption, though it can 
be explicitly shown, that self-averaging of the order pa-
rameter is violated close to Anderson metal–insulator tran-
sition [9,10]. Here, the ideas originating from Ref. 3 are of 
primary importance [11]. 

The problem of superconductivity in disordered sys-
tems in the limit of strongly coupled Cooper pairs, includ-
ing the region of BCS–BEC (Bose–Einstein condensation) 
crossover, was not well studied until recently. In fact, the 
problem of superconductivity in the case of strong enough 
pairing interactions was considered for a long enough time 
[12]. Significant progress here was achieved by Nozieres 
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and Schmitt-Rink [13], who proposed an effective method 
to study the crossover from BCS behavior in the weak 
coupling region towards Bose–Einstein condensation of 
Cooper pairs in the strong coupling region. One of the 
simplest models, where we can study the BCS–BEC cross-
over, is Hubbard model with attractive interaction. The 
most successful theoretical approach to describe strong 
electronic correlations in Hubbard model (both repulsive 
and attractive) is the dynamical mean field theory (DMFT) 
[14–16]. The attractive Hubbard model was already stud-
ied within this approach in a number of papers [17–21]. 
However, there are only few papers, where disorder effects 
in BCS–BEC crossover region were taken into account. 

In recent years we have developed the generalized 
DMFT+Σ  approach to Hubbard model [22–25], which is 
very convenient for the studies of different “external” (with 
respect to DMFT) interactions, such as pseudogap fluctua-
tions [22–25], disorder scattering [26,27] and electron–
phonon interaction [28]). This approach is also well suited to 
the analysis of two-particle properties, such as dynamic (op-
tical) conductivity [26,29]. In Ref. 21 we have used this ap-
proach to analyze the single-particle properties of the normal 
(nonsuperconducting) phase and optical conductivity of the 
attractive Hubbard model. Further on, DMFT+Σ  approach 
was used to study disorder influence on superconducting 
transition temperature, which was calculated within 
Nozieres–Schmitt–Rink approach [30,31]. 

The general review of DMFT+Σ  approach was given in 
Ref. 25, and the review of this approach to disordered 
Hubbard model (both repulsive and attractive) was recently 
presented in Ref. 32. 

In this paper we investigate Ginzburg–Landau (GL) ex-
pansion for disordered attractive Hubbard model including 
the BCS–BEC crossover region and the limit of strong cou-
pling. Coefficients of GL — expansion in BCS–BEC cross-
over region were studied in a number of papers [33–35], but 
there were no previous studies of disorder effects, except our 
recent paper [36], where we have considered only the case 
of homogeneous GL expansion and demonstrated certain 
universal behavior of GL coefficients on disorder (reflecting 
the generalized Anderson theorem). Below we mainly con-
centrate on the study of the GL coefficient before the gradi-
ent term, where such universal behavior is just absent. Here 
we limit ourselves to the case of weak enough disorder 
( 1)Fp l >> , neglecting the effects of Anderson localization, 
which can significantly change the behavior of this coeffi-
cient in the limit of strong disorder [9,10]. 

2. Hubbard model within DMFT+Σ  approach 

We shall consider the disordered paramagnetic Hubbard 
model with attractive interaction. The Hamiltonian is writ-
ten as:  
 †= ,j i ii i i

ij i i
H t a a n U n nσ σσ ↑ ↓

〈 〉σ σ
− + ε −∑ ∑ ∑  (1) 

where > 0t  is the transfer integral between the nearest 
neighbors on the lattice, U  is the Hubbard-like on site at-
traction, †=i i in a aσ σ σ  is electron number operator at site i , 

ia σ  ( †
ia σ) is electron annihilation (creation) operator at i th 

site and spin σ . Local energy levels iε  are assumed to be 
independent and random at different sites. To use the 
standard “impurity” diagram technique we assume the 
Gaussian statistics for energy levels iε : 

 
2

2
1( ) = exp

2 2
i

i
 ε

ε −  π∆ ∆ 
 . (2) 

Parameter ∆ here is the measure of disorder strength, while 
the Gaussian random field of energy levels introduces the 
“impurity” scattering, which is considered using the stand-
ard approach, using the averaged Green's functions [37]. 

The generalized DMFT+Σ  approach [22–25] adds to 
the standard DMFT [14–16] an additional “external” elec-
tron self-energy ( )Σ εp  (in general case momentum de-
pendent), which is produced by additional interactions out-
side the DMFT, which gives an effective procedure to 
calculate both single-particle and two-particle properties  
[26,29,32]. The success of this approach is related to 
choice of the single-particle Green’s function in the fol-
lowing form:  

 1( , ) = ,
( ) ( ) ( )

G ε
ε +µ − ε −Σ ε −Σ εp

p
p

 (3) 

where ( )ε p  — is the “bare” electron dispersion, while the 
full self-energy is the additive sum the local self-energy 

( )Σ ε , determined from DMFT, and “external” ( )Σ εp . Thus 
we neglect all the interference processes between of Hub-
bard and “external” interactions. This allows us to con-
serve the general structure of self-consistent equations of 
the standard DMFT [14–16]. At the same time, at each step 
of DMFT iterations the “external” self-energy ( )Σ εp  is 
recalculated using some approximate calculation scheme, 
corresponding to the form of additional interaction, while 
the local Green’s function is dressed by ( )Σ εp  at each step 
of DMFT procedure. 

Here, in the impure Hubbard model, the “external” self-
energy entering DMFT+Σ  is taken in the simplest form (self-
consistent Born approximation), which neglects all diagrams 
with intersecting lines of impurity scattering, so that: 

 2( ) ( ) = ( , ),GΣ ε → Σ ε ∆ ε∑p
p

p  (4) 

where ( , )G ε p  is the single-electron Green’s function (3) 
and ∆ is the amplitude of site disorder. 

To solve the effective Anderson impurity model of 
DMFT throughout this paper we used the numerical 
renormalization group (NRG) algorithm [38]. All calcula-
tions below were done for the case of the quarter-filled 
band (n = 0.5 electrons per lattice site). 
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Further on we shall consider the model of the “bare” 
conduction band with semi-elliptic density of states (per 
unit cell and single spin projection):  

 2 2
0 2

2( ) =N D
D

ε − ε
π

 (5) 

where D  defines the band half-width. This is a rather good 
approximation for three-dimensional case. 

In Ref. 31 we have given an analytic proof that in 
DMFT+Σ  approximation for disordered Hubbard model 
with semi-elliptic density of states all disorder effects in 
single-particle properties, calculated in DMFT+Σ  (with the 
use of self-consistent Born approximation (4)) are reduced 
to conduction band-widening by disorder, i.e., to the re-
placement (in the density of states) effD D→ , where effD  
is the effective half-width of the band in the presence of 
disorder scattering:  

 
2

eff 2= 1 4D D
D
∆

+  (6) 

so that the “bare” density of states (in the absence of corre-
lations, = 0U ) becomes:  

 2 2
0 eff2

eff

2( ) =N D
D

ξ − ε
π

  (7) 

conserving its semi-elliptic form. It should be noted, that 
for different models of the “bare” conduction band disorder 
can also change the form of the density of states, so that 
such universal disorder effects in single-properties is absent. 
However, in the limit of strong enough disorder almost any 
initial density of states actually acquires semi-elliptic form, 
restoring this universal dependence on disorder [31]. 

The temperature of superconducting transition in attrac-
tive Hubbard model within DMFT was calculated in a 
number of papers [17,18,20], analyzing both the Cooper 
instability of the normal phase [17] (divergence of Cooper 
susceptibility) and the disappearance of superconducting 
order parameter [18,20]. In Ref. 21 we determined the crit-
ical temperature from instability of the normal phase (in-
stability of DMFT iteration procedure). The results ob-
tained were in good agreement with the results of Refs. 17, 
18, 20. Besides that, in Ref. 21 to calculate cT  we have 
used the Nozieres–Schmitt-Rink approach [13], showing 
that this approach qualitatively, though approximately, de-
scribes the BCS–BEC crossover region. In Refs. 30, 31 we 
used the combination of Nozieres–Schmitt-Rink approach 
and DMFT+Σ  for detailed studies of disorder influence on 
the temperature of superconducting transition and the num-
ber of local pairs. In this approach we determine cT  from the 
following equation [31]:  

 0

tanh
2

1 = ( )
2

cTU d N
∞

−∞

ε −µ

ε ε
ε −µ∫   (8) 

with chemical potential µ for different U  and ∆ being de-
termined from DMFT+Σ  calculations, i.e., from the stand-
ard equation for the number of electrons (band filling), 
defined by the Green’s function (3). This allows us to find 

cT  for the wide range of the model parameters, including 
the BCS–BEC crossover region and the limit of strong 
coupling, as well as for the different disorder levels. This 
reflects the physical meaning of Nozieres–Schmitt-Rink 
approximation: in the weak coupling region transition tem-
perature is controlled by the equation for Cooper instability 
(8), while in the strong coupling limit it is determined by 
the temperature of Bose condensation of compact Cooper 
pairs, which is controlled by chemical potential. 

In Fig. 1 we show the universal dependence of super-
conducting critical temperature cT  on Hubbard attraction 
for different levels of disorder obtained in Ref. 31. This is 
a manifestation of the generalized Anderson theorem. In 
the weak coupling region cT  is well described by BCS 
model (dashed line in Fig. 1 shows cT  determined by 
Eq. (8) with chemical potential independent of U  and ob-
tained for the quarter-filled “bare” band), while in the 
strong coupling region cT  is determined by the condition of 
Bose condensation of Cooper pairs giving 2 /t U  depend-
ence (corresponding to inverse mass dependence of com-
pact Bosons), passing through a characteristic maximum at 

eff/2 1U D   in BCS–BEC crossover region. 

3. Ginzburg–Landau expansion 

Ginzburg–Landau expansion for the difference of free 
energies of superconducting and normal phases can be 
written in the standard form:  

 2 2 2 4= | | | | | | ,
2s n
BF F A q C− ∆ + ∆ + ∆q q q  (9) 

where ∆q  is the Fourier component of the order parameter. 

Fig. 1. (Color online) Universal dependence of superconducting 
critical temperature on Hubbard attraction for different levels of 
disorder. 
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Microscopically GL expansion (9) is determined by di-
agrams of loop-expansion for the free energy of electrons 
in an “external” field of random fluctuations of order pa-
rameter with small wave vector q [10,37] shown in Fig. 2 
(where fluctuations are represented by dashed lines). In 
disordered system, the use here of the standard impurity 
diagram technique implicitly assumes the self-averaging 
nature of the order parameter [8–10]. 

Within the framework of Nozieres–Schmitt-Rink ap-
proach [13] the loops with two and four Cooper vertices, 
shown in Fig. 2, do not contain contributions from attrac-
tive Hubbard interaction (as in weak coupling theory) and 
are “dressed” only by disorder (impurity) scattering*. 

However, the chemical potential here, which has an im-
portant dependence on the strength of interaction U  and 
determines the condition of Bose condensation of Cooper 
pairs, should be calculated in the framework of DMFT+Σ  
approximation, as it was done in Refs. 30, 31 in calcula-
tions of cT . 

In Ref. 36 we have shown that in this approach GL co-
efficients A and B  are determined by the following expres-
sions:  

 0

tanh1 2( ) = ( ) ,
2( )

TA T d N
U

∞

−∞

ε −µ

− ε ε
ε −µ∫   (10) 

 03 2

( )/2= tanh ( ).
22( ) cosh

2

d TB N
T

T

∞

−∞

 
 ε ε −µ ε −µ

− ε ε −µε −µ   
 

∫   (11) 

For cT T→  coefficient ( )A T  takes the usual form:  

 ( ) ( ).cA T T T≡ α −  (12) 

In BCS weak coupling limit we obtain the standard expres-
sions for α and B  [37]:  

 0
02 2

( ) 7 (3)= , = ( ).
8

BCS BCS
c c

N
B N

T T
µ ζ

α µ
π



  (13) 

so that coefficients A  and B  are determined only by disor-
der widened density of states 0 ( )N ε  and chemical potential 
µ. Then, in the case of semi-elliptic density of states their 
dependence on disorder is described by the simple re-
placement effD D→  and we have universal dependencies 
of α and B  (properly normalized by powers of eff2D ) on 

eff/2U D , as shown in Fig. 3. Both α and B  drop fast with 
the growth of interaction eff/2U D . 

It should be noted that Eqs. (10) and (11) for coeffi-
cients A and B  were obtained in Ref. 36 using the exact 
Ward identities and remain valid also in the limit of strong 
disorder (up to Anderson localization). Correspondingly, in 
the limit of strong disorder the coefficients A and B  de-

* In the absence of disorder this approach gives the same results for GL coefficients as in Refs. 33–35, where the functional integral 
for free energy was analyzed via Hubbard–Stratonovich transformation, reducing it to the functional integral over arbitrary fluctua-
tions of superconducting order parameter. 

Fig. 3. (Color online) Universal dependence of Ginzburg–Landau 
coefficients α  (a) and B  (b) on the strength of Hubbard attrac-
tion for different levels of disorder. 

Fig. 2. Diagrammatic representation of Ginzburg–Landau expan-
sion. 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2017, v. 43, No. 1 25 



E.Z. Kuchinskii, N.A. Kuleeva, and M.V. Sadovskii 

pend on disorder only via appropriate dependence of the 
density of states. 

Dependence on disorder, related only to the band wid-
ening by effD D→ , is also observed for specific heat dis-
continuity at the critical temperature [36], determined by 
coefficients α and B :  

 
2

( ) ( ) = .s c n c cC T C T T
B
α

−  (14) 

In Fig. 4 we show the universal dependence of specific 
heat discontinuity on eff/2U D . In BCS limit specific heat 
discontinuity grows with coupling, while in BEC limit it 
drops with eff/2U D , passing through maximum at 

eff/2 0.55U D ≈  in BCS–BEC crossover region. This be-
havior of specific heat discontinuity is mainly related to the 
similar dependence of cT  (cf. Fig. 1), as 2 /Bα  in Eq. (14) 
only smoothly depends on the coupling strength. 

From diagrammatic representation of GL expansion 
shown in Fig. 2 it is clear, that coefficient C  is determined 
by the 2q  term in the expansion of the two-particle loop 
(first term in Fig. 2) in powers of q. Then we obtain: 

 20 , ,

( , ) ( ,0)
= ,lim

n n

q n
C T

q
′ ′

→ ′

Φ ε −Φ ε
− ∑ pp pp

p p

q
 (15) 

where , ( , )n′Φ εp p q  is two-particle Green’s function in 
Cooper channel “dressed” (in Nozieres–Schmitt-Rink ap-
proximation) only by impurity scattering. To determine the 
coefficient C  we again use the exact Ward identity, derived 
by us in Ref. 29:  

 1 1
0 0

( , ) ( , ) =

( , ) ( ( , ) ( , ) ,

n n

n n n

G G

G G
+ −

− −
′ + −

′

ε − −ε −

 ′ ′= − Φ ε ε − −ε − ∑ pp
p

p p

q p p  (16) 

where =
2± ±
qp p , 0

1( , ) =n
n

G ε
ε +µ − εp

p  is the “bare” 

single-particle Green’s function at Fermion Matsubara fre-
quencies nε , while ( , )nG ε p  is the single-particle Green’s 

function “dressed” only by impurity scattering. Introducing 
the notation ( , ) = ( , ) ( , )n n nG G G+ −∆ ε ε − −ε −p p p  and us-
ing the symmetry ( ) = ( )ε ε −p p  and ( , ) = ( , )n nG Gε − εp p  
we rewrite the Ward identity as:  

 ( , ) = ( , )(2 ),n n nG i′ ′
′

∆ ε − Φ ε ε − ∆ε∑ pp p
p

p q  (17) 

where =
+ −

∆ε ε − εp p p . Then we can perform here summa-
tion over p  (also with additional multiplication by ∆εp) to 
obtain the following system of equations:  

 0 1( , ) = 2 ( , ) ( , )n n n nG i∆ ε − ε Φ ε +Φ ε∑
p

p q q ,  

 ( , ) =nG∆ε ∆ ε∑ p
p

p   

 1
,

= 2 ( , ) ( , ) ,n n ni ′ ′
′

− ε Φ ε + ∆ε Φ ε ∆ε∑ p pp p
p p

q q  (18) 

where  
0 ( , ) = ( , )n n′

′
Φ ε Φ ε∑ pp

pp
q q , 

1( , ) = ( , ) = ( , )n n n′ ′ ′
′ ′

Φ ε Φ ε ∆ε ∆ε Φ ε∑ ∑pp p p pp
pp pp

q q q . 

Then, excluding 1( , )nΦ ε q  from this system of equations, 
we obtain:  

 2
0( , ) = 2 ( , ) (2 ) ( , )n n n n nG i G i∆ε ∆ ε − ε ∆ ε − ε Φ ε +∑ ∑p

p p
p p q  

 ( , ) .n′ ′
′

+ ∆ε Φ ε ∆ε∑ p pp p
pp

q  (19) 

All terms in Eq. (19) are functions of 2q . Let us write 
down two lowest-order terms of 2q  — expansion of 
Eq. (19). The 0q  term is:  

 0

( , )

( , = 0) = .
2

n

n
n

G

i

∆ ε

Φ ε −
ε

∑
p

p

q  (20) 

As there is no dependence on the direction of q we choose 
= ( ,0,0)qq . Then 2q  terms are written as:  

 2( , = 0)(2 ) =n niϕ ε εq   

 20

( , )

= ( , ) ,lim
n

x n x
q

G

q
′

→′

∆ε ∆ ε

′Φ ε −
∑

∑
p

p
pp

pp

p

qv v  (21) 

where  

=x
xp

∂ε

∂
pv  and 0 0

0 2
( , ) ( ,0)

( , = 0) = .lim n n
qn

q
→

Φ ε −Φ ε
ϕ ε

q
q  

For weak enough disorder we can neglect localization 
corrections and consider the two-particle loop in “ladder” 
approximation for disorder scattering. Then, due to vector 

Fig. 4. (Color online) Universal dependence of specific heat dis-
continuity on eff/2U D  for different disorder levels. 
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nature of vertices, all vertex corrections vanish due to an-
gular integration and we obtain:  

 2( , ) = ( , ) ( , )x n x x n nG G′
′

′Φ ε ε −ε∑ ∑pp
pp p

q p pv v v . (22) 

For the case of isotropic spectrum we have:  

 
2

2 20

( , )
1= ( ( , ) ( , )).lim 2

n

n n
q x

G

G G
q p→

∆ε ∆ ε
∂ ε

− ε + −ε
∂

∑
∑

p
p p

p

p

p p   

  (23) 

As a result, we can write C  coefficient (15) as: 
_____________________________________________________ 

 

2
2

2

2

1( , ) ( , ) ( ( , ) ( , ))
2

= .
(2 )

x n n n n
x

n n

G G G G
p

C T
i

∂ ε
ε −ε + ε + −ε

∂
−

ε

∑ ∑
∑

p

p p
p p p pv

 (24) 

After the standard summation over Matsubara frequencies we obtain:  

 
2

2
2

tanh1 ( , ) ( , ) ( , )2= Im Im .
8

R A Rp
x

x

G G GTC d
i ip

∞

−∞

ε
 ∂ εε −ε ε − ε +
 π ε ε + δ ε + δ∂ 

∑∫
p

p p pv  (25) 

Finally C  coefficient is expressed as:  

 
2

2
2 2

tanh1 2= Im ( ( , ) ( , )) Im ( , )
8

R A R
x

x

TC d G G G
p

∞

−∞

ε
 ∂ ε
 − ε ε −ε + ε +
 π ε ∂ 

∑∫
p

p
p p pv   

 
2

2
2

1 Re( (0, ) (0, )) Re (0, ) .
16

R A R
x

x
G G G

T p

 ∂ ε
 + +
 ∂ 

∑ p

p
p p pv  (26) 

________________________________________________

The procedure to calculate velocity xv  and its derivative 
2

2
xp

∂ ε

∂

p  in the model with semi-elliptic density of states was 

discussed in detail in Ref. 26. 
In the absence of disorder ( = 0∆ ) we replace 0G G→  

and the expression for C  takes the following form:  

 
22

2 2

tanh1 1 12=
8 2( )

x

x

TC
Tp

ε −µ 
  ∂ ε
  − − −
 π ε −µ ε −µ ε −µ ∂  

 

∑
p

p

p pp p

v .  

  (27) 

In the weak coupling BCS limit in the absence of disorder 
the coefficient C  reduces to the standard expression [37]:  

 
2

02 2
7 (3)= ( ) ,

16
F

BCS
c

C N
dT

ζ
µ

π

v
 (28) 

where Fv  is Fermi velocity, d  — dimensionality of space. 
Semi-elliptic density of states is a good approximation for 

= 3d . As noted above disorder influence on C  is not re-
duced to a simple replacement 0 0N N→  , so that even in 
the BCS weak coupling limit (in contrast to coefficients α 
and B  (cf. (13)) we can not derive for C  a compact expres-
sion, similar to (28). 

4. Main results 

Let us discuss now the main results of our calculations 
for the gradient term coefficient C  of GL expansion and 
the related physical characteristics, such as the coherence 
length, penetration depth and the slope of the upper critical 
magnetic field at cT . 

The coherence length at given temperature ( )Tξ  deter-
mines the characteristic scale of order-parameter ∆ in-
homogeneities:  

 2 ( ) = .CT
A

ξ −  (29) 

Coefficient A changes its sign at the critical temperature 
= ( )cA T Tα − , so that  

 ( ) = ,
1 / c

T
T T
ξ

ξ
−

 (30) 

where we have introduced the coherence length as:  

 = .
c

C
T

ξ
α

 (31) 

In the weak coupling limit and in the absence of disorder it 
is written in the standard form [37]: 

 
2

7 (3)= = .
16

BCS F
BCS

BCS c c

C
T Td

ζ
ξ

α π

v  (32) 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2017, v. 43, No. 1 27 



E.Z. Kuchinskii, N.A. Kuleeva, and M.V. Sadovskii 

Penetration depth of magnetic field into superconductor 
is defined as:  

 
2

2
2( ) = .

32
c BT

ACe
λ −

π
 (33) 

Thus:  

 ( ) = ,
1 / c

T
T T
λ

λ
−

 (34) 

where we have introduced:  

 
2

2
2= ,

32 c

c B
CTe

λ
απ

 (35) 

which in the absence of disorder has the form:  

 
2 2

2
2 2 2

0
= = .

32 16 ( )
BCS

BCS
BCS BCS c F

Bc c d
C Te e N

λ
απ π µ v

 (36) 

Note that BCSλ  does not depend on cT , and corresponding-
ly on the coupling strength, so that it is convenient for 
normalization of penetration depth λ (35) for arbitrary U  
and ∆. 

Close to cT  the upper critical field 2cH  is defined via 
GL coefficients as:  

 0 0
2 2= = ,

22 ( )
c

AH
CT

Φ Φ
−

ππξ
 (37) 

where 0 = /c eΦ π  is magnetic flux quantum. Then the 
slope of the upper critical field at cT  is given by:  

 2 0= .
2

cdH
dT C

Φ α
π

 (38) 

In Fig. 5 we show the dependencies of coefficient C  on 
the strength of Hubbard attraction for different disorder 
levels. It is seen that C  drops fast with the growth of the 
coupling constant. Especially fast this drop is in the weak 
coupling region (see insert in Fig. 5(a)). Being essentially a 
two-particle characteristic coefficient C  does not demon-
strate universal dependencies on disorder, similar to α and 
B  coefficients, as is clearly seen from Fig. 5 (b). Figure 5 
(c) shows the coupling strength dependence of C  normal-
ized by its BCS value (28) in the absence of disorder. 

In Fig. 6 we show the dependencies of C  on disorder 
for different values of coupling strength /2U D. In the 
weak coupling limit ( /2 = 0.1U D ) we observe fast 
enough drop of C  with the growth of disorder in the re-
gion of weak enough disorder scattering. However, in the 
region of strong enough disorder we can observe even the 
growth of C  with disorder, related mainly to noticeable 
band widening at high disorder levels and respective drop 
in the effective coupling eff/2U D . For intermediate cou-
plings ( /2 = 0.4–0.6)U D  coefficient C  only demonstrates 
some weak growth with disorder. In BEC limit ( /2 > 1U D ) 
coefficient C  is practically independent of disorder. 

Let us now discuss the physical characteristics. De-
pendence of coherence length on the strength of Hubbard 
attraction is shown in Fig. 7. We can see that in the weak 
coupling region (cf. insert in Fig. 7) the coherence length 
drops fast with the growth of U  at any disorder level, 
reaching the values of the order of lattice spacing a at the 
intermediate couplings /2 0.4–0.6U D  . The further 
growth of the coupling strength leads only to small chang-
es of coherence length. 

In Fig. 8 we show the dependence of penetration depth, 
normalized by its BCS value in the absence of disorder 

Fig. 5. (Color online) Dependence of the coefficient C  on the 
strength of Hubbard attraction for different levels of disorder 
(a — lattice parameter). (a) — all energy units are normalized by 
the width of the “bare” conduction band 2D . (b) — all energy 
units normalized by effective band width eff2D . (c) — coeffi-
cient C  normalized by its value BCSC  in the weak coupling 
limit and in the absence of disorder. 
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(36), on Hubbard attraction U  for different levels of disor-
der. In the absence of disorder scattering penetration depth 
grows with coupling. Disorder in BCS weak coupling limit 
leads to fast growth of penetration depth (for “dirty” BCS 
superconductors 1/2l−λ  , where l  is the mean free path). 
In BEC strong coupling region disorder only slightly di-
minishes the penetration depth (cf. Fig. 11(a)). 

Dependence of the slope of the upper critical field 
2 2( / )

cc c T TdH dH dT =≡  on Hubbard attraction for different 
disorder levels is shown in Fig. 9. For any value of disor-
der scattering the slope of the upper critical field grows 
with coupling. However, in the limit of weak disorder we 
observe the fast growth of the slope with U  in the limit of 
weak enough attraction, while in the strong coupling limit 
the slope is weakly dependent on /2U D. 

In Fig. 10 we show the dependence of coherence length 
ξ  on disorder for different values of coupling. In BCS 
weak coupling limit and for weak enough disorder we ob-
serve the standard “dirty” superconductors dependence 

1/2lξ  , i.e., the coherence length drops with the growth of 
disorder (cf. insert in Fig. 10(a)). However, for strong 
enough disorder the coherence length starts to grow with 
disorder (cf. insert in Fig. 10(a) and Fig. 10(b)), which is 
mainly related to the noticeable widening of the initial 
band by disorder and appropriate drop of eff/2U D . With 
further growth of the coupling strength /2 0.4–0.6U D ≥  
the coherence length ξ  becomes of the order of the lattice 
parameter and is almost independent of disorder. In partic-
ular, in strong coupling BEC limit for /2 = 1.4, 1.6U D  the 
growth of disorder to very large values ( /2 = 0.5D∆ ) leads 
to the drop of coherence length by the factor of two (cf. 
Fig. 10(b)). 

Dependence of penetration depth on disorder for differ-
ent values of Hubbard attraction is shown in Fig. 11(a). In 
the limit of weak coupling in accordance with the theory of 
“dirty” superconductors disorder leads to the growth of 
penetration depth 1/2l−λ  . With the increase of the cou-
pling strength this growth of penetration depth with disor-

Fig. 6. (Color online) Dependence of coefficient C, normalized 
by its value in the absence of disorder, on disorder levels for dif-
ferent values of Hubbard attraction U. 

Fig. 7. (Color online) Dependence of coherence length, normal-
ized by lattice parameter a, on Hubbard attraction U for different 
disorder levels. Insert: fast growth of coherence length in weak 
coupling BCS limit. 

Fig. 8. (Color online) Dependence of penetration depth, normal-
ized by its BCS value in the absence of disorder, on Hubbard 
attraction U for different disorder levels. 

Fig. 9. (Color online) Dependence of the upper critical magnetic 
field slope on Hubbard attraction U for different disorder levels. 
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der slows down and in the limit of very strong coupling 
/2 = 1.4, 1.6U D  penetration depth even slightly diminishes 

with the growth of disorder. In Fig. 11(b) we show the dis-
order dependence of dimensionless Ginzburg–Landau pa-
rameter = /κ λ ξ. We can see that in the weak coupling 
limit GL parameter grows fast with disorder (cf. insert in 
Fig. 11(b)) in accordance with the theory of “dirty” super-
conductors, where 1l−κ  . With the increase of the cou-
pling the growth of GL parameter with disorder slows 
down and in the limit of strong coupling /2 > 1U D  parame-
ter κ  is practically independent of disorder. 

In Fig. 12 we show the dependence of the slope of the 
upper critical magnetic field on disorder. In the weak cou-
pling limit we again observe the typical “dirty'' supercon-
ductor behavior — the slope grows with disorder (cf. Fig. 
12(a) and the insert in Fig. 12(b)). For the intermediate 
coupling region ( / 2 = 0.4 0.8U D − ) the slope of the upper 
critical field is practically independent of disorder. In the 
limit of very strong coupling at small disorder the slope of 
the upper critical field can even slightly diminish, but in 
the limit of strong disorder the slope grows with the 
growth of disorder scattering. 

5. Conclusion 

In the framework of DMFT+Σ  generalization of dy-
namic mean field theory we have studied the effects of 
disorder on the coefficients of Ginzburg–Landau expan-
sion and the related physical characteristics of supercon-
ductors close to cT  in attractive Hubbard model. To study 
the GL coefficients we have used the combination of 
DMFT+Σ  approach and Nozieres–Schmitt-Rink approxi-
mation. Calculations were performed for the wide range of 
the values of attractive potential U , from the weak cou-
pling region ( eff/2 1U D << ), where instability of the normal 
phase and superconductivity are well described by BCS mod-
el, up to the strong coupling limit ( eff/2 > 1U D ), where the 
superconducting transition is related to the Bose –Einstein 
condensation of compact Cooper pairs. 

The growth of the coupling strength U  leads to fast 
drop of all GL coefficients. Coherence length ξ  drops fast 
with the growth of the coupling strength and for 

/2 0.4U D   becomes of the order of the lattice parameter 
and only slightly changes with the further growth of the 
coupling. Penetration depth in “clean” superconductors 
grows with U , while in “dirty” case it drops in the weak 
coupling region and grows in BEC limit, passing through 

Fig. 10. (Color online) Dependence of coherence length on disor-
der for different values of Hubbard attraction. (a) — coherence 
length normalized by lattice parameter a. Insert: coherence length 
dependence on disorder in the limit of weak coupling. (b) —
coherence length normalized by its value in the absence of disorder. 

Fig. 11. (Color online) Dependence of penetration depth (a) and 
Ginzburg–Landau parameter (b) on disorder for different values 
of Hubbard attraction. Insert: the growth of GL parameter with 
disorder in the weak coupling limit. 
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the minimum in the intermediate (crossover) region of 
/2 0.4–0.8U D  . The slope of the upper critical magnetic 

field grows with U . Specific heat discontinuity grows with 
Hubbard attraction U  in the weak coupling region and 
diminishes in the strong coupling region, passing through 
the maximum at eff/2 0.55U D ≈ . 

Disorder influence on the critical temperature cT , GL 
coefficients A and B  and specific heat discontinuity is uni-
versal — their change is related only to conduction band 
widening by disorder scattering, i.e., to the replacement 

effD D→ . Thus, both in BCS–BEC crossover region and 
in the strong coupling limit both critical temperature and 
GL coefficients A and B  obey the generalized Anderson 
theorem — all the influence of disorder reduces to disorder 
change of the density of states. 

GL coefficient C  was studied here in the “ladder” ap-
proximation for disorder scattering. Disorder influence 
upon C  is not universal and is not related purely to the 
conduction band widening by disorder. In the limit of weak 
coupling eff/2 1U D <<  the behavior of C  and the related 
physical characteristics are well described by the usual 
theory of “dirty” superconductors. Both C  and coherence 
length drops fast with the growth of disorder, while the 

penetration depth and the slope of the upper critical mag-
netic field grow with disorder. In the region of BCS–BEC 
crossover and in the BEC limit the coefficient C  and all 
physical characteristics are only weakly dependent on dis-
order. In particular, in BEC limit both the coherence length 
and penetration depth are only slightly suppressed with the 
growth of disorder, so that the GL parameter κ  is practi-
cally independent of disorder. 
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