126 research outputs found
Stack and Queue Layouts via Layered Separators
It is known that every proper minor-closed class of graphs has bounded
stack-number (a.k.a. book thickness and page number). While this includes
notable graph families such as planar graphs and graphs of bounded genus, many
other graph families are not closed under taking minors. For fixed and ,
we show that every -vertex graph that can be embedded on a surface of genus
with at most crossings per edge has stack-number ;
this includes -planar graphs. The previously best known bound for the
stack-number of these families was , except in the case
of -planar graphs. Analogous results are proved for map graphs that can be
embedded on a surface of fixed genus. None of these families is closed under
taking minors. The main ingredient in the proof of these results is a
construction proving that -vertex graphs that admit constant layered
separators have stack-number.Comment: Appears in the Proceedings of the 24th International Symposium on
Graph Drawing and Network Visualization (GD 2016
Aligned Drawings of Planar Graphs
Let be a graph that is topologically embedded in the plane and let
be an arrangement of pseudolines intersecting the drawing of .
An aligned drawing of and is a planar polyline drawing
of with an arrangement of lines so that and are
homeomorphic to and . We show that if is
stretchable and every edge either entirely lies on a pseudoline or it has
at most one intersection with , then and have a
straight-line aligned drawing. In order to prove this result, we strengthen a
result of Da Lozzo et al., and prove that a planar graph and a single
pseudoline have an aligned drawing with a prescribed convex
drawing of the outer face. We also study the less restrictive version of the
alignment problem with respect to one line, where only a set of vertices is
given and we need to determine whether they can be collinear. We show that the
problem is NP-complete but fixed-parameter tractable.Comment: Preliminary work appeared in the Proceedings of the 25th
International Symposium on Graph Drawing and Network Visualization (GD 2017
Mixed Linear Layouts of Planar Graphs
A -stack (respectively, -queue) layout of a graph consists of a total
order of the vertices, and a partition of the edges into sets of
non-crossing (non-nested) edges with respect to the vertex ordering. In 1992,
Heath and Rosenberg conjectured that every planar graph admits a mixed
-stack -queue layout in which every edge is assigned to a stack or to a
queue that use a common vertex ordering.
We disprove this conjecture by providing a planar graph that does not have
such a mixed layout. In addition, we study mixed layouts of graph subdivisions,
and show that every planar graph has a mixed subdivision with one division
vertex per edge.Comment: Appears in the Proceedings of the 25th International Symposium on
Graph Drawing and Network Visualization (GD 2017
Upward Three-Dimensional Grid Drawings of Graphs
A \emph{three-dimensional grid drawing} of a graph is a placement of the
vertices at distinct points with integer coordinates, such that the straight
line segments representing the edges do not cross. Our aim is to produce
three-dimensional grid drawings with small bounding box volume. We prove that
every -vertex graph with bounded degeneracy has a three-dimensional grid
drawing with volume. This is the broadest class of graphs admiting
such drawings. A three-dimensional grid drawing of a directed graph is
\emph{upward} if every arc points up in the z-direction. We prove that every
directed acyclic graph has an upward three-dimensional grid drawing with
volume, which is tight for the complete dag. The previous best upper
bound was . Our main result is that every -colourable directed
acyclic graph ( constant) has an upward three-dimensional grid drawing with
volume. This result matches the bound in the undirected case, and
improves the best known bound from for many classes of directed
acyclic graphs, including planar, series parallel, and outerplanar
The Queue-Number of Posets of Bounded Width or Height
Heath and Pemmaraju conjectured that the queue-number of a poset is bounded
by its width and if the poset is planar then also by its height. We show that
there are planar posets whose queue-number is larger than their height,
refuting the second conjecture. On the other hand, we show that any poset of
width has queue-number at most , thus confirming the first conjecture in
the first non-trivial case. Moreover, we improve the previously best known
bounds and show that planar posets of width have queue-number at most
while any planar poset with and has queue-number at most its
width.Comment: 14 pages, 10 figures, Appears in the Proceedings of the 26th
International Symposium on Graph Drawing and Network Visualization (GD 2018
Layout of Graphs with Bounded Tree-Width
A \emph{queue layout} of a graph consists of a total order of the vertices,
and a partition of the edges into \emph{queues}, such that no two edges in the
same queue are nested. The minimum number of queues in a queue layout of a
graph is its \emph{queue-number}. A \emph{three-dimensional (straight-line
grid) drawing} of a graph represents the vertices by points in
and the edges by non-crossing line-segments. This paper contributes three main
results:
(1) It is proved that the minimum volume of a certain type of
three-dimensional drawing of a graph is closely related to the queue-number
of . In particular, if is an -vertex member of a proper minor-closed
family of graphs (such as a planar graph), then has a drawing if and only if has O(1) queue-number.
(2) It is proved that queue-number is bounded by tree-width, thus resolving
an open problem due to Ganley and Heath (2001), and disproving a conjecture of
Pemmaraju (1992). This result provides renewed hope for the positive resolution
of a number of open problems in the theory of queue layouts.
(3) It is proved that graphs of bounded tree-width have three-dimensional
drawings with O(n) volume. This is the most general family of graphs known to
admit three-dimensional drawings with O(n) volume.
The proofs depend upon our results regarding \emph{track layouts} and
\emph{tree-partitions} of graphs, which may be of independent interest.Comment: This is a revised version of a journal paper submitted in October
2002. This paper incorporates the following conference papers: (1) Dujmovic',
Morin & Wood. Path-width and three-dimensional straight-line grid drawings of
graphs (GD'02), LNCS 2528:42-53, Springer, 2002. (2) Wood. Queue layouts,
tree-width, and three-dimensional graph drawing (FSTTCS'02), LNCS
2556:348--359, Springer, 2002. (3) Dujmovic' & Wood. Tree-partitions of
-trees with applications in graph layout (WG '03), LNCS 2880:205-217, 200
The Complexity of Drawing Graphs on Few Lines and Few Planes
It is well known that any graph admits a crossing-free straight-line drawing
in and that any planar graph admits the same even in
. For a graph and , let denote
the minimum number of lines in that together can cover all edges
of a drawing of . For , must be planar. We investigate the
complexity of computing these parameters and obtain the following hardness and
algorithmic results.
- For , we prove that deciding whether for a
given graph and integer is -complete.
- Since , deciding is NP-hard for . On the positive side, we show that the problem
is fixed-parameter tractable with respect to .
- Since , both and
are computable in polynomial space. On the negative side, we show
that drawings that are optimal with respect to or
sometimes require irrational coordinates.
- Let be the minimum number of planes in needed
to cover a straight-line drawing of a graph . We prove that deciding whether
is NP-hard for any fixed . Hence, the problem is
not fixed-parameter tractable with respect to unless
A linear-time algorithm for finding a complete graph minor in a dense graph
Let g(t) be the minimum number such that every graph G with average degree
d(G) \geq g(t) contains a K_{t}-minor. Such a function is known to exist, as
originally shown by Mader. Kostochka and Thomason independently proved that
g(t) \in \Theta(t*sqrt{log t}). This article shows that for all fixed \epsilon
> 0 and fixed sufficiently large t \geq t(\epsilon), if d(G) \geq
(2+\epsilon)g(t) then we can find this K_{t}-minor in linear time. This
improves a previous result by Reed and Wood who gave a linear-time algorithm
when d(G) \geq 2^{t-2}.Comment: 6 pages, 0 figures; Clarification added in several places, no change
to arguments or result
An Improved Bound for First-Fit on Posets Without Two Long Incomparable Chains
It is known that the First-Fit algorithm for partitioning a poset P into
chains uses relatively few chains when P does not have two incomparable chains
each of size k. In particular, if P has width w then Bosek, Krawczyk, and
Szczypka (SIAM J. Discrete Math., 23(4):1992--1999, 2010) proved an upper bound
of ckw^{2} on the number of chains used by First-Fit for some constant c, while
Joret and Milans (Order, 28(3):455--464, 2011) gave one of ck^{2}w. In this
paper we prove an upper bound of the form ckw. This is best possible up to the
value of c.Comment: v3: referees' comments incorporate
On obstacle numbers
The obstacle number is a new graph parameter introduced by Alpert, Koch, and Laison (2010). Mukkamala et al. (2012) show that there exist graphs with n vertices having obstacle number in Ω(n/ log n). In this note, we up this lower bound to Ω(n/(log log n)2). Our proof makes use of an upper bound of Mukkamala et al. on the number of graphs having obstacle number at most h in such a way that any subsequent improvements to their upper bound will improve our lower bound
- …