9 research outputs found

    Dynamical Chaos and Level Splitting under the Channeling of the High Energy Positrons in [100] Direction of the Silicon Crystal

    Full text link
    The motion of charged particles in a crystal in the axial channeling regime can be both regular and chaotic. The chaos in quantum case manifests itself in the statistical properties of the energy levels set. These properties have been studied previously for the electrons channeling along [110] direction of the silicon crystal, in the case when the classical motion was completely chaotic, as well as for the ones channeling along [100] direction, when the classical motion can be both regular and chaotic for the same energy depending on the initial conditions. Here we study the positrons channeling in [100] direction. This case is of special interest due to the substantial tunneling probability between dynamically isolated regular motion domains in the phase space. The interaction of the energy levels via tunneling distinctly changes the level spacing statistics. All transverse motion energy levels as well as corresponding stationary wave functions are computed numerically for the 30 GeV positrons channeling in [100] direction of the silicon crystal. The values of the matrix elements for the tunnel transitions are extractad from these data. These results confirm the chaos assistance for the tunneling and the level splitting. These values will be used in the further researches of the quantum chaos manifestations in the channeling phenomenon.Comment: Presented on the XIV International Symposium "Radiation from Relativistic Electrons in Periodic Structures", September 18-22, 2023, Tsaghkadzor, Armeni

    On the effect of quantum tunneling on the energy spectrum of the transverse motion of channeled positrons in a silicon crystal

    Get PDF
    The movement of charged particles in a crystal can be both regular and chaotic. At the quantum level, chaos manifests itself in the statistical properties of the set of energy levels. Systems, in which regions of regular motion are separated in the phase space by a region of dynamic chaos, are of particular interes

    Splitting of the transverse-motion energy levels of positrons during channeling in the [100] direction of a silicon crystal

    Get PDF
    The motion of charged particles in the crystal can be both regular and chaotic. Within the quantum approach, chaos manifests itself in the statistical properties of the set of energy levels. The systems in which regions of regular motion are separated by that of chaotic motion in phase space are of special interest. The statistics of levels of these systems is greatly influenced by the possibility of tunneling between phase-space regions dynamically isolated from each othe

    Regular and chaotic motion domains in the channeling electron's phase space and mean level density for its transverse motion energy

    Get PDF
    The motion of charged particles in a crystal in the axial channeling regime can be both regular and chaotic. The chaos in quantum case manifests itself in the statistical properties of the energy levels set. These properties have been studied previously for the electrons channeling along direction of the silicon crystal, in the case when the classical motion was completely chaotic. It is demonstrated that the level spacing distribution for both electrons and positrons can be better described by Berry-Robnik distribution than by both Wigner (completely chaotic case) or Poisson (completely regular case) distribution

    THE INFLUENCE OF REGULAR AND GENETICALLY MODIFIED SOYBEANS ON POSTNATAL DEVELOPMENT OF RATS

    No full text
    Ukraine is one of the European and world leaders in soybean cultivation. According to some estimation, 30-90% of the crops area is used currently for cultivation of genetically modified varieties. As modified soybean areas are expanding, the potential nutritional threats related to this product should be thoroughly assessed. The influence of nutrition ration consisting of 20% of the thermo-treated genetically modified soybeans on postnatal development of rats has been investigated over two generations in comparison with nutrition by regular thermo-treated beans. The number of alive and dead newborns, average number of offspring and the survival rate has been calculated as well as general estimation of physical development of the newborn rats was made. The experimental results prove that the reproductive function of rats and the offspring development are not seriously influenced by nutrition with genetically modified soybeans within the first and second generations. No statistically reliable difference was found between the characteristic parameters of the experimental and control groups, which remained within their regular physiological limits. However, some decrease in the suckling age rats’ number was registered in the experimental group

    Status and initial physics performance studies of the MPD experiment at NICA

    No full text
    The Nuclotron-based Ion Collider fAcility (NICA) is under construction at the Joint Institute for Nuclear Research (JINR), with commissioning of the facility expected in late 2022. The Multi-Purpose Detector (MPD) has been designed to operate at NICA and its components are currently in production. The detector is expected to be ready for data taking with the first beams from NICA. This document provides an overview of the landscape of the investigation of the QCD phase diagram in the region of maximum baryonic density, where NICA and MPD will be able to provide significant and unique input. It also provides a detailed description of the MPD set-up, including its various subsystems as well as its support and computing infrastructures. Selected performance studies for particular physics measurements at MPD are presented and discussed in the context of existing data and theoretical expectations

    A new hybrid gadolinium nanoparticles-loaded polymeric material for neutron detection in rare event searches

    No full text
    International audienceExperiments aimed at direct searches for WIMP dark matter require highly effective reduction of backgrounds and control of any residual radioactive contamination. In particular, neutrons interacting with atomic nuclei represent an important class of backgrounds due to the expected similarity of a WIMP-nucleon interaction, so that such experiments often feature a dedicated neutron detector surrounding the active target volume. In the context of the development of DarkSide-20k detector at INFN Gran Sasso National Laboratory (LNGS), several R&D projects were conceived and developed for the creation of a new hybrid material rich in both hydrogen and gadolinium nuclei to be employed as an essential element of the neutron detector. Thanks to its very high cross-section for neutron capture, gadolinium is one of the most widely used elements in neutron detectors, while the hydrogen-rich material is instrumental in efficiently moderating the neutrons. In this paper results from one of the R&Ds are presented. In this effort the new hybrid material was obtained as a poly(methyl methacrylate) (PMMA) matrix, loaded with gadolinium oxide in the form of nanoparticles. We describe its realization, including all phases of design, purification, construction, characterization, and determination of mechanical properties of the new material

    A new hybrid gadolinium nanoparticles-loaded polymeric material for neutron detection in rare event searches

    No full text
    International audienceExperiments aimed at direct searches for WIMP dark matter require highly effective reduction of backgrounds and control of any residual radioactive contamination. In particular, neutrons interacting with atomic nuclei represent an important class of backgrounds due to the expected similarity of a WIMP-nucleon interaction, so that such experiments often feature a dedicated neutron detector surrounding the active target volume. In the context of the development of DarkSide-20k detector at INFN Gran Sasso National Laboratory (LNGS), several R&D projects were conceived and developed for the creation of a new hybrid material rich in both hydrogen and gadolinium nuclei to be employed as an essential element of the neutron detector. Thanks to its very high cross-section for neutron capture, gadolinium is one of the most widely used elements in neutron detectors, while the hydrogen-rich material is instrumental in efficiently moderating the neutrons. In this paper results from one of the R&Ds are presented. In this effort the new hybrid material was obtained as a poly(methyl methacrylate) (PMMA) matrix, loaded with gadolinium oxide in the form of nanoparticles. We describe its realization, including all phases of design, purification, construction, characterization, and determination of mechanical properties of the new material
    corecore