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Abstract: The motion of charged particles in a crystal in the axial channeling regime can be both
regular and chaotic. The chaos in quantum case manifests itself in the statistical properties of
the energy levels set. These properties have been studied previously for the electrons channeling
along [110] direction of the silicon crystal, in the case when the classical motion was completely
chaotic. The case of channeling along [100] direction is of special interest because the classical
motion here can be both regular and chaotic for the same energy depending on the initial conditions.
The semiclassical energy level density (as well as its part that corresponds to the regular motion
domains in the phase space) is computed for the 10 GeV channeling electrons and positrons. It
is demonstrated that the level spacing distribution for both electrons and positrons can be better
described by Berry–Robnik distribution than by both Wigner (completely chaotic case) or Poisson
(completely regular case) distributions.
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1 Introduction

When a fast charged particle is incident on a crystal at a small angle to any crystallographic axis
densely packed with atoms, it can perform the finite motion in the transverse plane. This motion
is known as the axial channeling [1–3]. The particle motion in this case could be described with
a good accuracy as the one in the continuous potential of the atomic string. During motion in
this potential the longitudinal particle momentum p‖ is conserved, so the motion description is
reduced to two-dimensional problem of motion in the transversal plane. From the viewpoint of the
dynamical systems theory, the channeling particle’s motion could be either regular or chaotic. The
quantum chaos theory [4–6] predicts qualitative differences for these alternatives.

Themanifestations of chaos in quantum systems are found, first of all, in the statistical properties
of their energy spectra. The quantum chaos theory predicts (see, e.g., [4–6]) that the energy levels
nearest-neighbor distribution of the chaotic system obeys Wigner distribution

p(s) = (πρ2s/2) exp(−πρ2s2/4) (1.1)

(where s is the distances between consequent energy levels, ρ is the mean level density on the energy
range under consideration) while the regular system — the exponential one (frequently referred as
Poisson distribution)

p(s) = ρ exp(−ρs) . (1.2)

The level statistics for the electrons channeling near [110] direction in silicon crystal has been
studied in [7, 8]. In that case each pair of the closest parallel atomic strings forms the two-well
potential (see, e.g., [2]), in which the motion above the saddle point is chaotic for the major part
of the initial conditions. As a result, the level spacing statistics in that case is well described by
Wigner distribution (1.1).

The aim of the present paper is to study the level spacing statistics in the case of co-existence
of regular and chaotic motion domains. Such situation takes the place when the electron channels
near [100] direction of silicon crystal. The level spacing statistics is described in this case by
Berry–Robnik distribution [9]
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where
erfc (x) =

2
√
π

∫ ∞

x

e−t
2
dt = 1 − erf (x) . (1.4)

It is presupposed that the regular motion domains and (single) chaotic motion domain generate
independent level sequences with the densities ρ1 and ρ2 (ρ = ρ1 + ρ2) respectively. Our goal is
to calculate the relative contribution of the regular and chaotic motion domains into the mean level
density.

2 Method and potential wells

The electron transversal motion in the atomic string continuous potential is described by the two-
dimensional Schrödinger equation with Hamiltonian

Ĥ = −(c2~2/2E‖)
[
(∂2/∂x2) + (∂2/∂y2)

]
+U(x, y) , (2.1)

where the value E‖/c2 (here E‖ = (m2c4 + p2
‖
c2)1/2) plays the role of the particle mass [1]. The

Hamiltonian eigenvalues E⊥ are found numerically using the so-called spectral method [10–12].
Here we consider the particle’s motion near direction of the atomic string [100] of the Si crystal.
The continuous potential could be represented by the modified Lindhard potential [1]

U(1)(x, y) = −U0 ln
[
1 + βR2/(x2 + y2 + αR2)

]
, (2.2)

where U0 = 66.6 eV, α = 0.48, β = 1.5, R = 0.194 Å (Thomas–Fermi radius). These strings
form in the plane (100) the square lattice with the period a ≈ 1.92 Å. The additional contributions
from the eight closest neighboring strings lead to the following potential energy of the channeling
electron (figure 1, left):

U(−)(x, y) =
1∑

i=−1

1∑
j=−1

U(1)(x − ia, y − ja) . (2.3)

Axial channeling of positrons near [100] direction is possible in the small potential pit near the
center of the square cell with repulsive potentials −U(1) in the corners of the square (figure 1, right):

U(+)(x, y) = −U(1)(x − a/2, y − a/2) −U(1)(x − a/2, y + a/2)− (2.4)

−U(1)(x + a/2, y − a/2) −U(1)(x + a/2, y + a/2) − 7.9589 eV ,

where the constant is chosen to achieve zero potential in the center of the cell. The spectral method
for the channeling electrons and positrons near [100] direction had been tested in [13] for small E‖
values, when the total number of energy levels in the potential well is small. Here we put E‖ = 10
GeV to achieve the semiclassical domain, where the energy level density is high, as it is needed for
quantum chaos investigations.

The semiclassical mean level density is described by the integral [9] in the 4-dimensional phase
space with the classical counterpart H(x, y, px, py) of the quantum Hamiltonian (2.1):

ρ(E⊥) = (2π~)−2
∫

dxdydpxdpy δ
(
E⊥ − H(x, y, px, py)

)
= (2.5)
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Figure 1. Potentials (2.3) (left) and (2.4) (right).

=
2

(2π~)2

∫
dxdydpx

|vy(x, y, px)|
, (2.6)

where vy is the y-component of the electron’s velocity, and the integration in (2.6) is performed
over the domain

c2p2
x

2E‖
+U(x, y) ≤ E⊥ . (2.7)

The integral (2.6) is computed using Monte-Carlo method. Under that, if the random point falls
into a regular motion domain (see figure 2), its contribution is accounted both in the total density
of states and in the density of states related to the regular motion domain. The boundaries of the
regular motion domains are found using Poincaré sections method (see, e.g., [1]).

Figure 2. Left: the surface E = H(x, y, vx, vy = 0) that bounds the phase space domain (2.7) permitted for
motion under the laws of classical mechanics. The random points in this domain are plotted in red. Right:
the phase trajectories started from these points are traced up to their intersection with the plane y = 0. If
the final point falls into a regular motion domain on the Poincaré section, the initial point also belongs to the
regular motion domain in the phase space.
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3 Results and discussion

So, the electrons channeling along [100] direction move in a weakly disturbed, almost axially
symmetric potential (2.3). It leads to the approximate conservation of the electron’s angular
momentum (and hence to the regular dynamics) in the range far from the edges of the potential
well. As a consequence, there exists (among other regular domains) the regular motion domain
marked 1 on the Poincaré sections in the figure 3 (b) and (c); the electron’s transverse motion there
is similar to ones in a central field (the orbit is presented on the bottom of the figure 3 (a)). Such
domain exists in the whole range of transverse motion energies under consideration from E⊥ ≈ −14
eV (completely regular motion) up to E⊥ = −12, 0883 eV (the upper edge of the potential well).
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Figure 3. Middle: Poincaré sections for the lowest and highest transverse energy levels of the electron with
the energy of longitudinal motion 10 GeV in the range under consideration. Left and right: projections of
the phase space domains of types 1 (left) and 2 (right) onto the 3-dimensional space (x, y, vx) as well as the
corresponding orbits and Poincaré sections.

It turns out that the relative contribution of this domain to the mean level density ρ1/ρ is
approximately constant in the energy range under consideration, −13.19 ≤ E⊥ ≤ −12.0883 eV; it is
about 34%. The average contribution from all regular motion domains in that range is about 42%
(dashed line in the figure 4 (a)).

Themean level density ρ (2.6) as well as the contributions to it from the regular motion domains
are presented in figure 4 (a). Note that ρ varies in the range under consideration. In this case the
generic set of energy levels has to be subjected the so-called unfolding procedure [6], which leads to
dimensionless values of s with the mean levels density ρ = 1 for the E⊥ range under consideration.

Note also that the channeling particle’s eigenstates of the transverse motion can be classified
using the group theory. The potential (2.3) possesses the symmetry of the square thus isomorphic
to dihedral group D4 (or C4v). This group has four one-dimensional irreducible representations
and one two-dimensional one, denoted A1, A2, B1, B2, E [13, 14]. So, the eigenstates of the
first four types are non-degenerated while the eigenstates of the last type are twice degenerated.
The histogram in the figure 5 represents the levels spacings distribution for that four types of
non-degenerated levels.

The levels spacings distribution is compared to the predictions (1.1), (1.2) and (1.3), the last
case with the minimal and the average estimations of the regular motion domains contribution,
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ρ1/ρ ≈ 34% and ρ1/ρ ≈ 42% (left and middle panels in the figure 5, respectively). We see
that Berry–Robnik distribution (1.3) describes the level spacing distribution much better than pure
Wigner or Poisson ones (that is confirmed by the χ2 values calculated for all three hypotheses).

In contrast to the case of electron, the potential well for the channeling positrons (2.4) could
not be considered as a slightly perturbed axially symmetric well. Hence the structure of regular
motion domains stays rather complex yet near the upper edge of the potential pit (see figures 6 and
7).

-13.6 -13.4 -13.2 -13 -12.8 -12.6 -12.4 -12.2 -12

 E  ,  eV

0

100

200

300

400

500

600

700

800

900

1000

 , 
 e

V
-1

(a)

0 0.5 1 1.5

 E  ,  eV

0

50

100

150

200

250

300

350

400

450

500

 , 
 e

V
-1

(b)

Figure 4. (a) Semiclassical mean energy level density (2.6) (solid line), the contribution to it from the
domain of the type 1 (circles), and the total contribution from all domains of regular motion (dots; errors
are due to difficulty of precise determination of the domains’ boundaries). The dashed line corresponds to
the average value of the regular motion contribution in the interval under consideration that is equal to 42%.
(b) The same for the channeling positrons, while the circles are referred to the contribution from the regular
motion domains of the types 1, 2 and 3 in figure 6 (or the domain enveloping them for the lower energy
levels).
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Figure 5. Left: nearest-neighbor spacing distribution for the E‖ = 10 GeV channeling electrons in the
−13.19 ≤ E⊥ ≤ −12.0885 eV range in comparison with Wigner (1.1), Poisson (1.2), and Berry–Robnik
(1.3) distributions (dashed, dotted, and solid lines, respectively); ρ1 = 0.34. Middle: the same for ρ1 = 0.42.
Right: the same for the channeling positrons in the 0.9 ≤ E⊥ ≤ 1.4886 eV range with ρ1 = 0.26.

There is no the energy range with approximately constant relative contribution of the regular
motion domains to the mean level density ρ1/ρ. However we consider the energy range 0.9 ≤
E⊥ ≤ 1.4886 eV with the value ρ1/ρ about 26% in it (dashed line in the figure 4 (b)). We see that
in this case Berry–Robnik function also describes the level spacing distribution better than Wigner
or Poisson ones (figure 5, right panel).
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Figure 6. Main types of regular orbits and corresponding Poincaré sections for the channeling E‖ = 10
GeV positrons with E⊥ = 1.4857 eV.

Figure 7. The positron’s regular motion domains of various sorts from the figure 6 in the (x, y, vx) space.
The panel 1 presents the orbit 1 from the figure 6 (dark yellow) and its counterpart rotated on 90◦ (bright
yellow) making the same contribution to the total level density, the panel 2 presents the orbit 2 (blue)
and its counterpart (red); in these cases both counterparts make the same trace on the Poincaré section
plane. The panel 9 presents the orbit 9 (blue) and its counterpart (red); in this case the Poincaré sections
of these counterparts are essentially different. The panel 4, 5, 6 presents the orbit 4 (dark green) but not its
counterpart and also the orbits 5 and 6 that differ from each other only by the direction of motion, clockwise
or counterclockwise, their Poincaré sections are symmetric to each other (purple and bright green).

4 Conclusion

The energy levels of the transverse motion of E‖ = 10GeV electrons and positrons channeling in the
[100] direction of a silicon crystal are found using the spectral method of numerical integration of
the time-dependent Schrödinger equation. The case of channeling in this direction is interesting for
the quantum chaos investigations due to the co-existence of the regular and chaotic motion domains
with given transverse motion energy value. The Berry-Robnik theory predicts the formula for the
level spacing distribution for such cases.
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We have estimated the relative contribution of the regular motion domains in the phase space
in the semiclassical mean level density. This value is needed as a parameter in Berry-Robnik
distribution.

There exists the electron’s transverse energy interval where the contribution of the regular
motion domains is approximately constant, satisfying the condition under which Berry–Robnik
theory is built; it comprises approximately 42%. The level spacing distribution in this interval
is much better described by Berry-Robnik distribution rather than pure Wigner or Poisson ones
(χ2 = 8.545 for 11 degrees of freedom that corresponds to p = 0.66; for Wigner and Poisson
distributions we have p values 0 and 3.1 · 10−4, respectively).

There is no wide enough interval with approximately constant regular contribution in the case
of channeling positrons. However, even in this case Berry-Robnik distribution, with the mean
regular contribution as the parameter, describes the level spacing distribution better than Wigner
and Poisson ones (χ2 = 6.3349 for 11 degrees of freedom that corresponds to p = 0.85; for Wigner
and Poisson distributions we have p values 0.47 and 3.5 · 10−4, respectively).
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