31 research outputs found

    Effects of Cannabinoids on Caffeine Contractures in Slow and Fast Skeletal Muscle Fibers of the Frog

    Get PDF
    The effect of cannabinoids on caffeine contractures was investigated in slow and fast skeletal muscle fibers using isometric tension recording. In slow muscle fibers, WIN 55,212-2 (10 and 5 ΌM) caused a decrease in tension. These doses reduced maximum tension to 67.43 ± 8.07% (P = 0.02, n = 5) and 79.4 ± 14.11% (P = 0.007, n = 5) compared to control, respectively. Tension-time integral was reduced to 58.37 ± 7.17% and 75.10 ± 3.60% (P = 0.002, n = 5), respectively. Using the CB1 cannabinoid receptor agonist ACPA (1 ΌM) reduced the maximum tension of caffeine contractures by 68.70 ± 11.63% (P = 0.01, n = 5); tension-time integral was reduced by 66.82 ± 6.89% (P = 0.02, n = 5) compared to controls. When the CB1 receptor antagonist AM281 was coapplied with ACPA, it reversed the effect of ACPA on caffeine-evoked tension. In slow and fast muscle fibers incubated with the pertussis toxin, ACPA had no effect on tension evoked by caffeine. In fast muscle fibers, ACPA (1 ΌM) also decreased tension; the maximum tension was reduced by 56.48 ± 3.4% (P = 0.001, n = 4), and tension-time integral was reduced by 57.81 ± 2.6% (P = 0.006, n = 4). This ACPA effect was not statistically significant with respect to the reduction in tension in slow muscle fibers. Moreover, we detected the presence of mRNA for the cannabinoid CB1 receptor on fast and slow skeletal muscle fibers, which was significantly higher in fast compared to slow muscle fiber expression. In conclusion, our results suggest that in the slow and fast muscle fibers of the frog cannabinoids diminish caffeine-evoked tension through a receptor-mediated mechanism

    Weighing on your mind

    No full text

    A Novel Multifunctional Metabolic Pathway In A Marine Mollusk Leads To Unprecedented Prostaglandin Derivatives (prostaglandin 1,15-lactones)

    No full text
    The discovery of high levels of prostaglandin (PG) 1,15-lactones of both the E and F series and their co-existence with PGs has been recently described in the opisthobranch mollusc Tethys fimbria. The present study was undertaken in order to investigate the biosynthesis of these novel natural PG derivatives in vivo using radiolabelled precursors, and to gain a preliminary understanding of their biological role. PGE2 1,15-lactone was shown to be produced from both PGE2 and PGF2-alpha in the mollusc mantle and appeared to be quickly transferred to the mollusc dorsal appendices (cerata). The detachment of the latter during the typical defence behaviour of T. fimbria was accompanied by the conversion of PGE2 and PGE3 1,15-lactones back to the corresponding PGs. Both PGE2 and PGE2 1,15-lactone were also shown to be biosynthesized from arachidonic acid. Lactones of the F series were present as 11-acetyl derivatives in T. fimbria mantle biosynthesized from arachiodonic acid. Lactones of the F series were present as 11-acetyl derivatives in T. fimbria mantle and as 9- and 11-fatty acyl esters in the mollusc egg-mass and reproductive gland, and their biosynthesis from PGF2-alpha was demonstrated in all of these tissues. A multiple biological role of PG 1,15-lactones in T. fimbria defensive behaviour, smooth muscle contraction and egg production/fertilization control is hypothesized. The high amounts of PG derivatives found in T. fimbria and the biosynthetic studies described herein indicate that this marine mollusc may be a useful model for future studies on PG biosynthesis
    corecore