142 research outputs found

    Epizootiological-and-Epidemiological Situation in Natural Tularemia Foci of the Siberian and Far Eastern Federal Districts in 2011, and Prognosis for 2012

    Get PDF
    Presented is a piece of information about the situation in natural tularemia foci and human morbidity in the territory of Siberia and Far East in 2011. Outlined is the prognosis of epizootic situation for 2012. In 2011, sporadic morbidity was registered in the Novosibirsk, Tomsk, Kemerovo, and Omsk Regions. Isolated cases of the disease were identified in the Altai Territory, in the Khanty-Mansiisk autonomous district, and the Sakhalin Region. Specified is the fact that in 2011 epizooties were of a local scale, and the situation on tularemia on the whole was favorable. Nevertheless, the possibility of aggravation of the situation in some territories in 2012 is not ruled out completely

    ПРЯМОЕ ОПРЕДЕЛЕНИЕ ЗОЛОТА В СУСПЕНЗИЯХ СТАНДАРТНЫХ ОБРАЗЦОВ ГОРНЫХ ПОРОД И РУДЫ МЕТОДОМ ЭЛЕКТРОТЕРМИЧЕСКОЙ АТОМНО-АБСОРБЦИОННОЙ СПЕКТРОМЕТРИИ ВЫСОКОГО РАЗРЕШЕНИЯ Ю.А. Захаров, Д.С. Ирисов, Р.В. Окунев, Р.Х. Мусин, Р.Р. Хайбуллин

    Get PDF
    High resolution continuum source atomic absorption spectrometer ContrAA-700 with graphite furnace is used for direct gold determination in rocks and ores on the level 10-6-10-3 % mas. Russian standard reference materials of gold containing ore СЗР-4 (2.13 ± 0.05 g/ton), black slates of Sykhoy Log СЛг-1 (2.50 ± 0.03 g/ton) and СЧС-1 (0.10 ± 0.02 g/ton) in mass 1 mg was inserted into the furnace in the suspension form prepared on the mix of concentrated HNO3 and HCl (1:3) with following sevenfold dilution by water. It was revealed that spectral lines of gold have dense fine structured spectral interferences of different molecules of the matrix. Absorption resonance line Au 242.8 nm is overlapped by left wing of very intensive SiO band. Twice as less sensitive line Au 267.6 nm is in a narrow gap between the molecular components. Strong matrix depression of the analytical signal and intensive background at usual one-stage atomization do the analysis impossible if gold concentration less 2 g/ton. Application of the additional accessory Atzond-1 for two-stage probe atomization provides ability for automatic dozing of the suspensions and reduces the matrix interference. Due to fractionation of the sample vapors on the tungsten probe the line Au 267.6 nm, in difference from resonance line Au 242.8 nm, is completely freed from the spectral overlapping and provides lower quantitative limit of gold determination 0.05 g/ton (Sr =30 %; n = 5; Р= 0.95).Keywords: atomic absorption spectrometry, graphite atomizer, double-stage probe atomization, gold, silver, rocks, ores, black slate, suspension (Russian)DOI: http://dx.doi.org/10.15826/analitika.2014.18.4.004  Y.А. Zakharov, D.S. Irisov1, R.V. Okunev, R.Kh. Musin, R.R. HaibullinKazan (Volga region) Federal University, Kazan, Russian Federation1LLC «Atzond», Kazan, Russian FederationREFERENCES 1. Busev A.I., Ivanov V.M. Analiticheskaia khimiia zolota [Analytical chemistry of gold]. Moscow, Nauka, 1973. 263 p. (in Russian). 2. Vasilyeva I.E., Pozhidaev Yu.N., Vlasova N.N., Voronkov M.G., Philipchenko Yu.A. [Sorption-atomic-emission determination of gold, platinum and palladium in rocks and ores using sorbent PSTM-3Т]. Analitika i kontrol' [Analytics and control], 2010, vol. 14, no. 1, pp. 16-24. (in Russian). 3. Judelevich I.G., Starceva E.A. Atomno-absorbtsionnoe opredelenie blagorodnykh metallov [Atomic absorption determination of noble metals]. Novosibirsk, Nauka, 1981. 159 p. (in Russian). 4. Balaram V., Mathur R., Satyanarayanan M., Sawant S. S., Roy P., Subramanyam K. S. V., Kamala C. T., Anjaiah K. V., Ramesh S. L., Dasaram B. A Rapid Method for the Determination of Gold in Rocks, Ores and Other Geological Materials by F-AAS and GF-AAS After Separation and Preconcentration by DIBK Extraction for Prospecting Studies. MAPAN-Journal of Metrology Society of India, 2012, vol. 27, no. 2, pp. 87-95. doi: 10.1007/s12647-012-0012-2 5. Reddi G. S., Rao C. R. M. Analytical techniques for the determination of precious metals in geological and related materials. Analyst, 1999, vol. 124, pp. 1531-1540. 6. Shvetsov V. A. Probirnyi analiz pri razvedke zolotorudnykh mestorozhdenii. Diss. dokt. him. nauk. [The assay analysis at investigation of gold fields. Dr. chem. sci. diss.]. Irkutsk, 2006. 259 p. (in Russian). 7. Vasilyeva I.E., Shabanova E.V., Busko A.E., Kunaev A.B. [Estimation of Au- and Ag- particle sizes in geological samples using high time-resolved scintillation atomic emission analysis]. Analitika i kontrol' [Analytics and control], 2010, vol. 14, no. 4, pp. 201-213. (in Russian). 8. Konyshev V.O. [Experience of sampling error evaluation and development of methodology to explore a deposit with bonanza gold distribution]. Otechestvennaia geologiia [Domestic geology], 2004, no. 6, pp. 22-34. 9. Resano M., Aramendı´a M., Garcia-Ruiz E. and Belarra M. A. Solid sampling-graphite furnace atomic absorption spectrometry for the direct determination of Au in samples of various natures. J. Anal. At. Spectrom., 2005, vol. 20, pp. 479-481. 10. Zakharov Y.А., Okunev R.V., Hasanova S.I., Irisov D.S., Haibullin R.R. [Atomic absorption determination of gold and silver in rocks and ores using double-stage probe atomization in the graphite furnace]. Analitika i kontrol' [Analytics and control], 2013, vol. 17, no. 4, pp. 414-422 (in Russian). 11. Welz B., Becker-Ross H., Florek S., Heitmann U. High-Resolution Continuum Source AAS: The Better Way to Do Atomic Absorption Spectrometry. Weinheim, WILLEY-VCH, Verlag GmbHCo. KGaA, 2005. 295 p. 12. Gunduz S., Akman S. Determination of lead in rice grains by solid sampling HR-CS GFAAS. Food Chemistry, 2013, vol. 141, pp. 2634-2638. 13. Boschetti W., Borges A.R., DuarteA.T., Dessuy M.B., Vale M.G.R., de Andrade J.B. and Welz B. Simultaneous determination of Mo and Ni in wine and soil amendments by HR-CS GF AAS. Anal. Methods, 2014, vol. 6, pp. 4247-4256. 14. Castilho I.N., Pereira E.R., Welz B., Shaltout A.A., Caraseka E. and Martens I.B.G. Determination of selenium in soil samples using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sample analysis. Anal. Methods, 2014, vol. 6, pp. 2870-2875. 15. Castilho I.N., Welz B., Vale M.G., de Andrade J.B., Smichowski P., Shaltout A.A., Colares L., Carasek E. Comparison of three different sample preparation procedures for the determination of traffic-related elements in airborne particulate matter collected on glass fiber filters. Talanta, 2012, vol. 88, pp. 689–695. 16. Resano M., Mozas E., Crespo C., Briceсo J., del Campo Menoyoa J. and Belarra M. A. Solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry to monitor the biodistribution of gold nanoparticles in mice tissue after intravenous administration. J. Anal. At. Spectrom., 2010, vol. 25. pp. 1864-1873. 17. Zakharov Y.A., Haibullin R.R., Irisov D. S., Sadykov M. F., Gainutdinov A. R. [Hardware-software complex for atomic absorption spectrometry with multistage probe atomization]. Naychnoe priborostroenie [Scientific instrumentation], 2013, vol. 23, no 4, pp. 104-111. 18. Federal state budgetary institution of science A.P. Vinogradov Institute of Geochemistry SB RAS. Available at: http://www.igc.irk.ru/Innovation/Standarts-obr/Catalog-2013.pdf (accessed 01 July 2014). 19. Pupyshev A.A. Atomno-absorbtsionnyi spectral`nyi analiz [Atomic absorption spectral analysis]. Moscow, Technosphera Publ., 2009. 782 с. (in Russian). 20. López-Garcia I., Campillo N., Arnau-Jerez I., Hernández-Córdoba M. Slurry sampling for the determination of silver and gold in soils and sediments using electrothermal atomic absorption spectrometry. Spectrochim. Acta, 2003, vol. 58B, pp. 1715-1721. 21. Kurilko S. S., Put'makov A. N., Labusov V. A., Borovikov V. M., Seliunin D. O. Materialy XIII Mezhdunarodnogo simpoziuma «Primenenie analizatorov MAJeS v promyshlennosti» [Proc. 13th Int. Symp. "The use of MAES analyzers in the industry"]. Novosibirsk, 2013, pp. 40-50 (in Russian). 22. Katskov D.A., Khanye G.E. Simultaneous Multi-Element Electrothermal Atomic Absorption Determination Using a Low Resolution CCD Spectrometer and Continuum Light Source: The Concept and Methodology. S. Afr. J. Chem., 2010, vol. 63, pp. 45-57. 23. Gibson J., Katskov D.A. Simultaneous Determination of Metals in Coal with Low-Resolution Continuum Source Atomic Absorption Spectrometer and Filter Furnace Atomizer. S. Afr. J. Chem,. 2011, vol. 64, pp. 79-87. 24. Katskov D.A., Sadagov Yu.M. Design considerations regarding an atomizer for multi-element electrothermal atomic absorption spectrometry. Spectrochim. Acta, 2011, vol. 66B, pp. 451-460. 25. Kurfürst U. Solid Sample Analysis: Direct and Slurry Sampling Using GF-AAS and ETV-ICP. Berlin: Springer, 1998. 423 р. 26. Slurry sampling for direct analysis of solid materials by electrothermal atomic absorption spectrometry (ETAAS). A literature review from 1990 to 2000 / M.J. Cal-Prieto et [al.] // Talanta. 2002. V. 56. P. 1-51. 27. Zakharov Y.A., Kokorina O.B., Gil'mutdinov A.K. [Concentrating of determined elements on the probe in electrothermal atomizer]. Zhurnal prikladnoi spektroskopii [Journal of Applied Spectroscopy], 2005, vol. 72, no. 2, pp. 256-259 (in Russian).Атомно-абсорбционный спектрометр высокого разрешения ContrAA-700 с графитовой печью применен для прямого определения золота в горных породах и рудах на уровне 10-6-10-3 % мас.В печь вводили навески 1 мг стандартных образцов золотосодержащей руды СЗР-4 (2.13 ± 0.05 г/т), черных сланцев Сухого Лога СЛг-1 (2.5 ± 0.3 г/т) и СЧС-1 (0.10 ± 0.02 г/т) в виде суспензий, приготовленных на смеси концентрированных HNO3 и HCl (1 : 3) с последующим семикратным разбавлением водой. Выявлено наличие плотного окружения спектральных линий золота тонко структурированнымиполосами поглощения разнообразных молекул матрицы. Резонансная линия поглощения Au 242.8 нм перекрыта левым крылом очень интенсивной полосы  SiO.  В два раза менее чувствительная линия Au 267.6 нм находится в узком промежутке между спектральными молекулярными компонентами.  Из-за сильного подавления аналитического сигнала и интенсивного неселективного поглощения определение с использованием одностадийной атомизации крайне затруднено и может осуществляться при концентрации золота не менее 2 г/т. Использование приставки АТЗОНД-1 для осуществления двухстадийной зондовой атомизации позволило автоматически дозировать суспензии и снизить матричные помехи. За счет фракционирования паров пробы на вольфрамовом зонде линия Au 267.6 нм, в отличие от резонансной линии  Au  242.8 нм, освобождается от спектральных наложений и обеспечивает более низкий предел количественного определения золота 0.05 г/т (Sr =30 %; n = 5; Р = 0.95).Ключевые слова: атомно-абсорбционная спектрометрия, графитовый атомизатор, суспензия, золото, горная порода, черный сланец, двухстадийная зондовая атомизация DOI: http://dx.doi.org/10.15826/analitika.2014.18.4.004  ЛИТЕРАТУРА1. Бусев А.И., Иванов В.М. Аналитическая химия золота. М.: Наука, 1973. 263 с.2. Сорбционно-атомно-эмиссионное определение золота, платины и палладия в горных породах и рудах с использованием сорбента ПСТМ-З / И.Е. Васильева [и др.] // Аналитика и контроль. 2010. Т. 14, № 1. С. 16-24.3. Юделевич И.Г., Старцева Е.А. Атомно-абсорбционное определение благородных металлов. Новосибирск: Наука, 1981. 159 с.4. ARapid Method for the Determination of Gold in Rocks, Ores and Other Geological Materials by F-AAS and GF-AAS After Separation and Preconcentration by DIBK Extraction for Prospecting Studies / V. Balaram [et al.] // MAPAN-Journal of Metrology Society of India. 2012. V. 27, № 2. P. 87-95.5. Reddi G.S., Rao C.R.M. Analytical techniques for the determination of precious metals in geological and related materials // Analyst. 1999. V. 124. P. 1531-1540.6. Швецов В.А. Пробирный анализ при разведке золоторудных месторождений: дис. …  д-ра хим. наук. Иркутск, 2006. 259 с.7. Методика определения содержания золота и серебра в геологических образцах с использованием сцинтилляционного атомно-эмиссионного анализа с высоким временным разрешением/ И.Е. Васильева [и др.] // Аналитика и контроль. 2010. Т. 14, № 4. С. 201-213.8. Конышев В.О. Опыт оценки погрешностей опробования и совершенствование методологии разведки месторождения с бонанцевым распределением золота // Отечественная геология, 2004. № 6. С. 22-34.9. Solid sampling-graphite furnace atomic absorption spectrometry for the direct determination of Au in samples of various natures / M. Resano [et al.] // J. Anal. At. Spectrom. 2005. V. 20. 479-481.10. Атомно-абсорбционное определение золота и серебра в породах и рудах с помощью двухстадийной зондовой атомизации в графитовой печи / Ю.А. Захаров [и др.] // Аналитика и контроль. 2013. Т. 17, № 4. С. 414-422.11. Welz B., Becker-Ross H., Florek S., Heitmann U. High-Resolution Continuum Source AAS: The Better Way to Do Atomic Absorption Spectrometry. Weinheim, WILLEY-VCH,  Verlag GmbHCo. KGaA. 2005. 295 p.12. Gunduz S., Akman S. Determination of lead in rice grains by solid sampling HR-CS GFAAS // Food Chemistry. 2013. V. 141. P. 2634-2638.13. Simultaneous determination of Mo and Ni in wine and soil amendments by HR-CS GF AAS / W. Boschetti [et al.] // Anal. Methods. 2014. V. 6. P. 4247-4256.14. Determination of selenium in soil samples using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sample analysis / I.N.B. Castilho [et al.] // Anal. Methods. 2014. V. 6. P. 2870-2875.15. Comparison of three different sample preparation procedures for the determination of traffic-related elements in airborne particulate matter collected on glass fiber filters / I.N.B. Castilho [et al.] // Talanta. 2012. V. 88. P. 689-695.16. Solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry to monitor the biodistribution of gold nanoparticles in mice tissue after intravenous administration / M. Resano [et al.] // J. Anal. At. Spectrom. 2010. V. 25. P. 1864-1873.17. Аппаратно-программный комплекс для атомно-абсорбционной спектрометрии с многостадийной зондовой атомизацией / Ю.А. Захаров [и др.] // Научное приборостроение. 2013. Т. 23. №4. C. 104-111.18. Сайт Института геохимии им. А.П. Виноградова СО РАН [Электронный ресурс]: http://www.igc.irk.ru/Innovation/Standarts-obr/Catalog-2013.pdf (дата обращения: 01.07.2014).19. Пупышев А.А. Атомно-абсорбционный спектральный анализ. М.: Техносфера, 2009. 782 с.20. Slurry sampling for the determination of silver and gold in soils and sediments using electrothermal atomic absorption spectrometry / I. Lopez-Garcia [et al.] // Spectrochim. Acta. 2003. V. 58 B. P. 1715-1721.21. Разработка источника атомно-абсорбционного спектра для одновременного многоэлементного анализа / С.С. Курилко и [др.] // Материалы XIII Международного симпозиума «Применение анализаторов МАЭС в промышленности», Новосибирск, 2013. С. 40-50.22. Katskov D.A., Khanye G.E. Simultaneous Multi-Element Electrothermal Atomic Absorption Determination Using a Low Resolution CCD Spectrometer and Continuum Light Source: The Concept and Methodology // S. Afr. J. Chem. 2010. V. 63. P. 45-57.23. Gibson J., Katskov D.A. Simultaneous Determination of Metals in Coal with Low-Resolution Continuum Source Atomic Absorption Spectrometer and Filter Furnace Atomizer // S. Afr. J. Chem. 2011. V. 64. P. 79-87.24. Katskov D.A., Sadagov Yu.M. Design considerations regarding an atomizer for multi-element electrothermal atomic absorption spectrometry// Spectrochim. Acta. 2011. V. 66B. P. 451-460.25. Kurfürst U. Solid Sample Analysis: Direct and Slurry Sampling Using GF-AAS and ETV-ICP. Berlin: Springer, 1998. 423 р.26. Slurry sampling for direct analysis of solid materials by electrothermal atomic absorption spectrometry (ETAAS). A literature review from 1990 to 2000 / M.J. Cal-Prieto et [al.] // Talanta. 2002. V. 56. P. 1-51.27. Концентрирование определяемых элементов на зонде в электротермическом атомизаторе / Ю.А. Захаров [и др.] // Журн. прикл. спектр. 2005. Т. 72, № 2. С. 256–259

    АТОМНО-АБСОРБЦИОННОЕ ОПРЕДЕЛЕНИЕ ЗОЛОТА И СЕРЕБРА В ПОРОДАХ И РУДАХ С ПОМОЩЬЮ ДВУХСТАДИЙНОЙ ЗОНДОВОЙ АТОМИЗАЦИИ В ГРАФИТОВОЙ ПЕЧИ

    Get PDF
    New rapid method for quantitative determination of gold and silver in rock and ore suspensions using commercial spectrometer with additional accessories for probe atomization and barbotage shaking up of the sample in the autosampler is developed. Milled geological sample is maintained in the mix of acids HNO3 and HCl (1:3) 20 minutes and then diluted up to 5 times by deionized water to obtain suspension with concentration 100 mg/ml. The suspension is inserted into the graphite furnace of the spectrometer. The technique of double-stage probe atomization with independently heated U-shaped tungsten probe permits to minimize photometric noise, to remove strong matrix interferences and increase relative sensitivity of the gold determination. On the other hand it gives possibility to dilute atomic vapors in the atomizer for shifting upper limit of silver determination in the case of rich samples. Also the representative shots of the geological materials (~kg) and simple water calibration solutions of the elements can be used.  Detection limit of Au is 0.008 g/ton. Determination ranges are 0.03 – 20 and 0.0004 - 4.5 g/ton for gold and silver, respectively. Correctness of the analysis is checked using Russian standard reference materials of black slate СЧС-1, Sykhoy Log ore СЛг-1 and gold ore СЗР-4. Duration of the all analysis is 1.5 – 2 hour.Keywords: atomic absorption analysis, graphite atomizer, double-stage probe atomization, gold, silver, rocks, ores, black slate, suspension(Russian)DOI: http://dx.doi.org/10.15826/analitika.2013.17.4.006Y.А. Zakharov, R.V. Okunev, S.I. Hasanova, D.S. Irisov1, R.R. Haibullin1Kazan (Volga region) Federal University, Kazan, Russian Federation1LLC «Atzond», Kazan, Russian FederationПредложен новый способ количественного определения золота и серебра в суспензиях горных пород и руд с помощью атомно-абсорбционного спектрометра, оснащенного блоком зондовой атомизации и системой перемешивания пробы барботированием. Размолотый геологический образец выдерживается 20 минут в смеси кислот HNO3 и HCl (1:3).  Затем он  разводится в 5 раз водой для получения суспензии с концентрацией 100 мг/мл, которая непосредственно вводится в графитовую печь спектрометра. Применена техника двухстадийной атомизации с использованием независимо нагреваемого U-образного вольфрамового зонда. Она позволила минимизировать фотометрические шумы, устранять матричные помехи при определении золота и разбавлять атомный пар непосредственно в атомизаторе для увеличения верхнего предела определения серебра в случае богатых пород и руд. Обеспечена возможность использовать представительные навески вещества (~кг) и простые водные растворы элементов для калибровки. Рабочий диапазон определяемых содержаний золота 0.03-20 г/т, а серебра 0.0004-4.5 г/т. Правильность проверена на ГСО черного сланца СЧС-1,  руды Сухого лога СЛг-1 и золотосодержащей руды СЗР-4. Продолжительность анализа в целом 1.5-2 ч.Ключевые слова:атомно-абсорбционный анализ, графитовый атомизатор, двухстадийная зондовая атомизация, золото, серебро, горная порода, руда, черный сланец, суспензияDOI: http://dx.doi.org/10.15826/analitika.2013.17.4.00

    The GREGOR Fabry-P\'erot Interferometer

    Full text link
    The GREGOR Fabry-P\'erot Interferometer (GFPI) is one of three first-light instruments of the German 1.5-meter GREGOR solar telescope at the Observatorio del Teide, Tenerife, Spain. The GFPI uses two tunable etalons in collimated mounting. Thanks to its large-format, high-cadence CCD detectors with sophisticated computer hard- and software it is capable of scanning spectral lines with a cadence that is sufficient to capture the dynamic evolution of the solar atmosphere. The field-of-view (FOV) of 50" x 38" is well suited for quiet Sun and sunspot observations. However, in the vector spectropolarimetric mode the FOV reduces to 25" x 38". The spectral coverage in the spectroscopic mode extends from 530-860 nm with a theoretical spectral resolution R of about 250,000, whereas in the vector spectropolarimetric mode the wavelength range is at present limited to 580-660 nm. The combination of fast narrow-band imaging and post-factum image restoration has the potential for discovery science concerning the dynamic Sun and its magnetic field at spatial scales down to about 50 km on the solar surface.Comment: 14 pages, 17 figures, 4 tables; pre-print of AN 333, p.880-893, 2012 (AN special issue to GREGOR

    Precise measurement of RudsR_{\text{uds}} and RR between 1.84 and 3.72 GeV at the KEDR detector

    Full text link
    The present work continues a series of the KEDR measurements of the RR value that started in 2010 at the VEPP-4M e+ee^+e^- collider. By combining new data with our previous results in this energy range we measured the values of RudsR_{\text{uds}} and RR at nine center-of-mass energies between 3.08 and 3.72 GeV. The total accuracy is about or better than 2.6%2.6\% at most of energy points with a systematic uncertainty of about 1.9%1.9\%. Together with the previous precise RR measurement at KEDR in the energy range 1.84-3.05 GeV, it constitutes the most detailed high-precision RR measurement near the charmonium production threshold.Comment: arXiv admin note: text overlap with arXiv:1610.02827 and substantial text overlap with arXiv:1510.0266

    Measurement of J/ψγηcJ/\psi\to\gamma\eta_{\rm c} decay rate and ηc\eta_{\rm c} parameters at KEDR

    Full text link
    Using the inclusive photon spectrum based on a data sample collected at the J/ψJ/\psi peak with the KEDR detector at the VEPP-4M e+ee^+e^- collider, we measured the rate of the radiative decay J/ψγηcJ/\psi\to\gamma\eta_{\rm c} as well as ηc\eta_{\rm c} mass and width. Taking into account an asymmetric photon lineshape we obtained Γγηc0=2.98±0.180.33+0.15\Gamma^0_{\gamma\eta_{\rm c}}=2.98\pm0.18 \phantom{|}^{+0.15}_{-0.33} keV, Mηc=2983.5±1.43.6+1.6M_{\eta_{\rm c}} = 2983.5 \pm 1.4 \phantom{|}^{+1.6}_{-3.6} MeV/c2c^2, Γηc=27.2±3.12.6+5.4\Gamma_{\eta_{\rm c}} = 27.2 \pm 3.1 \phantom{|}^{+5.4}_{-2.6} MeV.Comment: 6 pages, 3 figure

    Measurement of J/psi to eta_c gamma at KEDR

    Full text link
    We present a study of the inclusive photon spectra from 5.9 million J/psi decays collected with the KEDR detector at the VEPP-4M e+e- collider. We measure the branching fraction of radiative decay J/psi to eta_c gamma, eta_c width and mass. Our preliminary results are: M(eta_c) = 2979.4+-1.5+-1.9 MeV, G(eta_c) = 27.8+-5.1+-3.3 MeV, B(J/psi to eta_c gamma) = (2.34+-0.15+-0.40)%.Comment: To be published in Proceedings of the PhiPsi09, Oct. 13-16, 2009, Beijing, Chin

    Measurement of B(J/psi->eta_c gamma) at KEDR

    Full text link
    We present a study of the inclusive photon spectrum from 6.3 million J/psi decays collected with the KEDR detector at the VEPP-4M e+e- collider. We measure the branching fraction of the radiative decay J/psi -> eta_c gamma, eta_c width and mass. Taking into account an asymmetric photon line shape we obtain: M(eta_c) = (2978.1 +- 1.4 +- 2.0) MeV/c^2, Gamma(eta_c) = (43.5 +- 5.4 +- 15.8) MeV, B(J/psi->eta_c gamma) = (2.59 +- 0.16 +- 0.31)%$.Comment: 6 pages, 1 figure. To be published in the proceedings of the 4th International Workshop on Charm Physics (Charm2010), October 21-24, 2010, IHEP, Beijin
    corecore