678 research outputs found

    Fukalite: an example of OD structure with two-dimensional disorder

    Get PDF
    The real crystal structure of fukalite, Ca4Si2O 6(OH)2(CO3), was solved by means of the application of order-disorder (OD) theory and was refined through synchrotron radiation diffraction data from a single crystal. The examined sample came from the Gumeshevsk skarn copper porphyry deposit in the Central Urals, Russia. The selected crystal displays diffraction patterns characterized by strong reflections, which pointed to an orthorhombic sub-structure (the "family structure" in the OD terminology), and additional weaker reflections that correspond to a monoclinic real structure. The refined cell parameters are a = 7.573(3), b = 23.364(5), c = 11.544(4) Å, β = 109.15(1)°, space group P21/c. This unit cell corresponds to one of the six possible maximum degree of order (MDO) polytypes, as obtained by applying the OD procedure. The derivation of the six MDO polytypes is presented in the Appendix1. The intensity data were collected at the Elettra synchrotron facility (Trieste, Italy); the structure refinement converged to R = 0.0342 for 1848 reflections with I > 2σ(I) and 0.0352 for all 1958 data. The structure of fukalite may be described as formed by distinct structural modules: a calcium polyhedral framework, formed by tobermorite-type polyhedral layers alternating along b with tilleyitetype zigzag polyhedral layers; silicate chains with repeat every fifth tetrahedron, running along a and linked to the calcium polyhedral layers on opposite sides; and finally rows of CO3 groups parallel to (100) and stacked along a

    Measurement of air and nitrogen fluorescence light yields induced by electron beam for UHECR experiments

    Get PDF
    Most of the Ultra High Energy Cosmic Ray (UHECR) experiments and projects (HiRes, AUGER, TA, EUSO, TUS,...) use air fluorescence to detect and measure extensive air showers (EAS). The precise knowledge of the Fluorescence Light Yield (FLY) is of paramount importance for the reconstruction of UHECR. The MACFLY - Measurement of Air Cherenkov and Fluorescence Light Yield - experiment has been designed to perform such FLY measurements. In this paper we will present the results of FLY in the 290-440 nm wavelength range for dry air and pure nitrogen, both excited by electrons with energy of 1.5 MeV, 20 GeV and 50 GeV. The experiment uses a 90Sr radioactive source for low energy measurement and a CERN SPS electron beam for high energy. We find that the FLY is proportional to the deposited energy (E_d) in the gas and we show that the air fluorescence properties remain constant independently of the electron energy. At the reference point: atmospheric dry air at 1013 hPa and 23C, the ratio FLY/E_d=17.6 photon/MeV with a systematic error of 13.2%.Comment: 19 pages, 8 figures. Accepted for publication in Astroparticle Physic

    Measurement of air fluorescence light yield induced by an electromagnetic shower

    Get PDF
    For most of the Ultra High Energy Cosmic Ray (UHECR) experiments and projects (HiRes, AUGER, TA, JEM-EUSO, TUS,...), the detection technique of Extensive Air Showers (EAS) is based, at least, on the measurement of the air fluorescence induced signal. The knowledge of the Fluorescence Light Yield (FLY) is of paramount importance for the UHECR energy reconstruction. The MACFLY experiment was designed to perform such FLY measurements. In this paper we will present the results of dry air FLY induced by 50 GeV electromagnetic showers as a function of shower age and as a function of the pressure. The experiment was performed at CERN using an SPS electron test beam line. It is shown that the FLY is proportional to deposited energy in air (E_d) and that the ratio FLY/E_d and its pressure dependence remain constant independently of shower age and more generally independently of the excitation source used (single electron track or air shower).For most of the Ultra High Energy Cosmic Ray (UHECR) experiments and projects (HiRes, AUGER, TA, JEM-EUSO, TUS,...), the detection technique of Extensive Air Showers (EAS) is based, at least, on the measurement of the air fluorescence induced signal. The knowledge of the Fluorescence Light Yield (FLY) is of paramount importance for the UHECR energy reconstruction. The MACFLY experiment was designed to perform such FLY measurements. In this paper we will present the results of dry air FLY induced by 50 GeV electromagnetic showers as a function of shower age and as a function of the pressure. The experiment was performed at CERN using an SPS electron test beam line. It is shown that the FLY is proportional to deposited energy in air (E_d) and that the ratio FLY/E_d and its pressure dependence remain constant independently of shower age and more generally independently of the excitation source used (single electron track or air shower)

    HORROR MOVIES AND A FEELING OF PROPERTY

    Full text link
    The problem of the possibility of stimulating a sense of ownership by such a form of socio-cultural impact as cinema is posed. The theoretical foundations of the hypothesis about the possibility of such stimulation are given. In particular, the main aspects of the emotional content of the horror film: victim; aggressor; quasi-messianic idea of the aggressor — largely correspond to the aspects of the sense of ownership: thrift; expansion; self-confidence. The results of a study in which a horror film changed the attitude to the category “Mine” are presented.Ставится проблема возможности стимулирования чувства собственности таким социально-культурным фактором, как кино. Приводятся теоретические основания гипотезы о возможности такого стимулирования. В частности, состав эмоционально значимых образов фильма ужасов: жертва; агрессор; квази-мессианская (псевдоморальная) идея агрессора — подобны аспектам чувства собственности: бережливость; экспансия; самоуверенность. Приведены результаты исследования, в котором фильм ужасов изменял отношение к категории «Мое»

    Low-valent homobimetallic Rh complexes: influence of ligands on the structure and the intramolecular reactivity of Rh–H intermediates

    Get PDF
    Supporting two metal binding sites by a tailored polydentate trop-based (trop - 5H-dibenzo[a,d] cyclohepten-5-yl) ligand yields highly unsymmetric homobimetallic rhodium(I) complexes. Their reaction with hydrogen rapidly forms Rh hydrides that undergo an intramolecular semihydrogenation of two C≡C bonds of the trop ligand. This reaction is chemoselective and converts C≡C bonds to a bridging carbene and an olefinic ligand in the first and the second semihydrogenation steps, respectively. Stabilization by a bridging diphosphine ligand allows characterization of a Rh hydride species by advanced NMR techniques and may provide insight into possible elementary steps of H₂ activation by interfacial sites of heterogeneous Rh/C catalysts
    corecore