37 research outputs found

    MutLα heterodimers modify the molecular phenotype of Friedreich ataxia

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Background: Friedreich ataxia (FRDA), the most common autosomal recessive ataxia disorder, is caused by a dynamic GAA repeat expansion mutation within intron 1 of FXN gene, resulting in down-regulation of frataxin expression. Studies of cell and mouse models have revealed a role for the mismatch repair (MMR) MutS-heterodimer complexes and the PMS2 component of the MutLα complex in the dynamics of intergenerational and somatic GAA repeat expansions: MSH2, MSH3 and MSH6 promote GAA repeat expansions, while PMS2 inhibits GAA repeat expansions. Methodology/Principal Findings: To determine the potential role of the other component of the MutLα complex, MLH1, in GAA repeat instability in FRDA, we have analyzed intergenerational and somatic GAA repeat expansions from FXN transgenic mice that have been crossed with Mlh1 deficient mice. We find that loss of Mlh1 activity reduces both intergenerational and somatic GAA repeat expansions. However, we also find that loss of either Mlh1 or Pms2 reduces FXN transcription, suggesting different mechanisms of action for Mlh1 and Pms2 on GAA repeat expansion dynamics and regulation of FXN transcription. Conclusions/Significance: Both MutLα components, PMS2 and MLH1, have now been shown to modify the molecular phenotype of FRDA. We propose that upregulation of MLH1 or PMS2 could be potential FRDA therapeutic approaches to increase FXN transcription. © 2014 Ezzatizadeh et al.This article has been made available through the Brunel Open Access Publishing Fund

    Psychopolitics: Peter Sedgwick’s legacy for mental health movements

    Get PDF
    This paper re-considers the relevance of Peter Sedgwick's Psychopolitics (1982) for a politics of mental health. Psychopolitics offered an indictment of ‘anti-psychiatry’ the failure of which, Sedgwick argued, lay in its deconstruction of the category of ‘mental illness’, a gesture that resulted in a politics of nihilism. ‘The radical who is only a radical nihilist’, Sedgwick observed, ‘is for all practical purposes the most adamant of conservatives’. Sedgwick argued, rather, that the concept of ‘mental illness’ could be a truly critical concept if it was deployed ‘to make demands upon the health service facilities of the society in which we live’. The paper contextualizes Psychopolitics within the ‘crisis tendencies’ of its time, surveying the shifting welfare landscape of the subsequent 25 years alongside Sedgwick's continuing relevance. It considers the dilemma that the discourse of ‘mental illness’ – Sedgwick's critical concept – has fallen out of favour with radical mental health movements yet remains paradigmatic within psychiatry itself. Finally, the paper endorses a contemporary perspective that, while necessarily updating Psychopolitics, remains nonetheless ‘Sedgwickian’

    MSH3 polymorphisms and protein levels affect CAG repeat instability in huntington's disease mice

    Get PDF
    Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)~100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of DNA repair genes may have prognostic implications for various repeat-associated diseases

    Muscleblind-Like 1 Knockout Mice Reveal Novel Splicing Defects in the Myotonic Dystrophy Brain

    Get PDF
    Myotonic dystrophy type 1 (DM1) is a multi-systemic disorder caused by a CTG trinucleotide repeat expansion (CTGexp) in the DMPK gene. In skeletal muscle, nuclear sequestration of the alternative splicing factor muscleblind-like 1 (MBNL1) explains the majority of the alternative splicing defects observed in the HSALR transgenic mouse model which expresses a pathogenic range CTGexp. In the present study, we addressed the possibility that MBNL1 sequestration by CUGexp RNA also contributes to splicing defects in the mammalian brain. We examined RNA from the brains of homozygous Mbnl1ΔE3/ΔE3 knockout mice using splicing-sensitive microarrays. We used RT-PCR to validate a subset of alternative cassette exons identified by microarray analysis with brain tissues from Mbnl1ΔE3/ΔE3 knockout mice and post-mortem DM1 patients. Surprisingly, splicing-sensitive microarray analysis of Mbnl1ΔE3/ΔE3 brains yielded only 14 candidates for mis-spliced exons. While we confirmed that several of these splicing events are perturbed in both Mbnl1 knockout and DM1 brains, the extent of splicing mis-regulation in the mouse model was significantly less than observed in DM1. Additionally, several alternative exons, including Grin1 exon 4, App exon 7 and Mapt exons 3 and 9, which have previously been reported to be aberrantly spliced in human DM1 brain, were spliced normally in the Mbnl1 knockout brain. The sequestration of MBNL1 by CUGexp RNA results in some of the aberrant splicing events in the DM1 brain. However, we conclude that other factors, possibly other MBNL proteins, likely contribute to splicing mis-regulation in the DM1 brain

    Oxygen redox chemistry without excess alkali-metal ions in Na2/3_{2/3}[Mg0.28_{0.28}Mn0.72_{0.72}]O2_2

    Get PDF
    The search for improved energy-storage materials has revealed Li- and Na-rich intercalation compounds as promising high-capacity cathodes. They exhibit capacities in excess of what would be expected from alkali-ion removal/reinsertion and charge compensation by transition-metal (TM) ions. The additional capacity is provided through charge compensation by oxygen redox chemistry and some oxygen loss. It has been reported previously that oxygen redox occurs in O 2pp orbitals that interact with alkali ions in the TM and alkali-ion layers (that is, oxygen redox occurs in compounds containing Li+^+–O(2pp)–Li+^+ interactions). Na2/3_{2/3}[Mg0.28_{0.28}Mn0.72_{0.72}]O2_2 exhibits an excess capacity and here we show that this is caused by oxygen redox, even though Mg2+^{2+} resides in the TM layers rather than alkali-metal (AM) ions, which demonstrates that excess AM ions are not required to activate oxygen redox. We also show that, unlike the alkali-rich compounds, Na2/3_{2/3}[Mg0.28_{0.28}Mn0.72_{0.72}]O2_2 does not lose oxygen. The extraction of alkali ions from the alkali and TM layers in the alkali-rich compounds results in severely underbonded oxygen, which promotes oxygen loss, whereas Mg2+^{2+} remains in Na2/3_{2/3}[Mg0.28_{0.28}Mn0.72_{0.72}]O2_2, which stabilizes oxygen
    corecore