7 research outputs found

    Exercise Causes Muscle GLUT4 Translocation in an Insulin-Independent Manner

    No full text
    Glucose uptake in skeletal muscle is dependent on the translocation of GLUT4 glucose transporters to the plasma membrane. The most important stimulators of glucose transport in skeletal muscle are insulin and exercise. Glucose uptake in skeletal muscle during exercise induces acceleration of many processes compared to the resting state. The scientific literature does not underline the role played by muscle contraction to increase glucose uptake with insulin-independent mechanisms. Search on Pub Med (May 05, 2015) using the key words "contraction and glucose uptake and muscle" gives 717 reports, while a search using the key words "insulin and glucose uptake and muscle" cites 5676 publications. The present paper describes the role of exercise in the muscle glucose uptake. Contraction of muscle induces GLUT4 translocation in the absence of insulin. There are different intracellular "pools" of GLUT4, one stimulated by insulin and another one stimulated by exercise. The roles exerted by AMPK, AICAR, calcium, NO, glycogen and hypoxia in the glucose uptake during exercise are emphasized. The effects of these phenomena on human wellness are reported

    Efficacy and safety of low-dose aspirin in polycythemia vera

    No full text
    BACKGROUND: The use of aspirin for the prevention of thrombotic complications in polycythemia vera is controversial. METHODS: We enrolled 518 patients with polycythemia vera, no clear indication for aspirin treatment, and no contraindication to such treatment in a double-blind, placebo-controlled, randomized trial to assess the safety and efficacy of prophylaxis with low-dose aspirin (100 mg daily). The two primary end points were the cumulative rate of nonfatal myocardial infarction, nonfatal stroke, or death from cardiovascular causes and the cumulative rate of nonfatal myocardial infarction, nonfatal stroke, pulmonary embolism, major venous thrombosis, or death from cardiovascular causes. The mean duration of follow-up was about three years. RESULTS: Treatment with aspirin, as compared with placebo, reduced the risk of the combined end point of nonfatal myocardial infarction, nonfatal stroke, or death from cardiovascular causes (relative risk, 0.41; 95 percent confidence interval, 0.15 to 1.15; P=0.09) and the risk of the combined end point of nonfatal myocardial infarction, nonfatal stroke, pulmonary embolism, major venous thrombosis, or death from cardiovascular causes (relative risk, 0.40; 95 percent confidence interval, 0.18 to 0.91; P=0.03). Overall mortality and cardiovascular mortality were not reduced significantly. The incidence of major bleeding episodes was not significantly increased in the aspirin group (relative risk, 1.62; 95 percent confidence interval, 0.27 to 9.71). CONCLUSIONS: Low-dose aspirin can safely prevent thrombotic complications in patients with polycythemia vera who have no contraindications to such treatment
    corecore