17,938 research outputs found

    TEC enhancement due to energetic electrons above Taiwan and the West Pacific

    Full text link
    The energetic electrons of the inner radiation belt during a geomagnetic disturbance can penetrate in the forbidden range of drift shells located at the heights of the topside equatorial ionosphere (<1000 km). A good correlation was previously revealed between positive ionospheric storms and intense fluxes of quasi-trapped 30-keV electrons at ~900 km height in the forbidden zone. In the present work, we use statistics to validate an assumption that the intense electron fluxes in the topside equatorial ionosphere can be an important source of the ionization in the low-latitude ionosphere. The data on the energetic electrons were obtained from polar orbiting satellites over the periods of the 62 strong geomagnetic storms from 1999 to 2006. Ionospheric response to the selected storms was determined using global ionospheric maps of vertical total electron content (VTEC). A case-event study of a major storm on 9 November 2004 provided experimental evidence in support to the substantial ionization effect of energetic electrons during positive ionospheric storms at the low latitudes. Statistical analysis of nine magnetic storms indicated that the VTEC increases coincided with and coexisted with intense 30-keV electron fluxes irrespective of local time and phase of geomagnetic storm. We concluded that extremely intense fluxes of the 30-keV electrons in the topside low-latitude ionosphere can contribute ~ 10 - 30 TECU to the localized positive ionospheric storms.Comment: 15 pages, 4 figures, 1 table accepted for publication in Terrestrial, Atmospheric and Oceanic Sciences (TAO), Dec. 2012 A special issue on "Connection of solar and heliospheric activities with near-Earth space weather: Sun-Earth connection

    Site amplification, attenuation, and scattering from noise correlation amplitudes across a dense array in Long Beach, CA

    Get PDF
    For accurate seismic hazard evaluation, both the spatial and frequency-dependent variabilities in the amplitudes of earthquake ground motions are needed. While this information is rarely fully available due to the paucity of relevant seismic data, dense arrays like the 5200-geophone array in Long Beach, California provide the opportunity to study this amplitude variability. Here we show that ambient noise correlation amplitudes from the Long Beach array can be used to directly determine frequency-dependent site amplification factors. We analyze Rayleigh-wavefield amplitude gradients from ambient noise correlations that are processed so that relative amplitudes satisfy the wave equation and are therefore meaningful. Ultimately, we construct maps of site amplification across Long Beach at frequencies of 0.67, 1.0, and 2.0 Hz. These maps correlate well with local structure, notably the Newport-Inglewood Fault and also to known velocity structure. Through this process, we also obtain constraints on average attenuation structure and local scattering

    Modeling the elastic transmission of tidal stresses to great distances inland in channelized ice streams

    Get PDF
    Geodetic surveys suggest that ocean tides can modulate the motion of Antarctic ice streams, even at stations many tens of kilometers inland from the grounding line. These surveys suggest that ocean tidal stresses can perturb ice stream motion at distances about an order of magnitude farther inland than tidal flexure of the ice stream alone. Recent models exploring the role of tidal perturbations in basal shear stress are primarily one- or two-dimensional, with the impact of the ice stream margins either ignored or parameterized. Here, we use two- and three-dimensional finite-element modeling to investigate transmission of tidal stresses in ice streams and the impact of considering more realistic, three-dimensional ice stream geometries. Using Rutford Ice Stream as a real-world comparison, we demonstrate that the assumption that elastic tidal stresses in ice streams propagate large distances inland fails for channelized glaciers due to an intrinsic, exponential decay in the stress caused by resistance at the ice stream margins. This behavior is independent of basal conditions beneath the ice stream and cannot be fit to observations using either elastic or nonlinear viscoelastic rheologies without nearly complete decoupling of the ice stream from its lateral margins. Our results suggest that a mechanism external to the ice stream is necessary to explain the tidal modulation of stresses far upstream of the grounding line for narrow ice streams. We propose a hydrologic model based on time-dependent variability in till strength to explain transmission of tidal stresses inland of the grounding line. This conceptual model can reproduce observations from Rutford Ice Stream

    Dynamics of coherent and incoherent emission from an artificial atom in a 1D space

    Full text link
    We study dynamics of an artificial two-level atom in an open 1D space by measuring evolution of its coherent and incoherent emission. States of the atom -- a superconducting flux qubit coupled to a transmission line -- are fully controlled by resonant excitation microwave pulses. The coherent emission -- a direct measure of superposition in the atom -- exhibits decaying oscillations shifted by π/2\pi/2 from oscillations of the incoherent emission, which, in turn, is proportional to the atomic population. The emission dynamics provides information about states and properties of the atom. By measuring the coherent dynamics, we derive two-time correlation function of fluctuations and, using quantum regression formula, reconstruct the incoherent spectrum of the resonance fluorescence triplet, which is in a good agreement with the directly measured one.Comment: 4 pages, 4 figure

    Averaging and sampling for magnetic-observatory hourly data

    Get PDF
    A time and frequency-domain analysis is made of the effects of averaging and sampling methods used for constructing magnetic-observatory hourly data values. Using 1-min data as a proxy for continuous, geomagnetic variation, we construct synthetic hourly values of two standard types: instantaneous "spot" measurements and simple 1-h "boxcar" averages. We compare these average-sample types with others: 2-h average, Gaussian, and "brick-wall" low-frequency-pass. Hourly spot measurements provide a statistically unbiased representation of the amplitude range of geomagnetic-field variation, but as a representation of continuous field variation over time, they are significantly affected by aliasing, especially at high latitudes. The 1-h, 2-h, and Gaussian average-samples are affected by a combination of amplitude distortion and aliasing. Brick-wall values are not affected by either amplitude distortion or aliasing, but constructing them is, in an operational setting, relatively more difficult than it is for other average-sample types. It is noteworthy that 1-h average-samples, the present standard for observatory hourly data, have properties similar to Gaussian average-samples that have been optimized for a minimum residual sum of amplitude distortion and aliasing. For 1-h average-samples from medium and low-latitude observatories, the average of the combination of amplitude distortion and aliasing is less than the 5.0 nT accuracy standard established by Intermagnet for modern 1-min data. For medium and low-latitude observatories, average differences between monthly means constructed from 1-min data and monthly means constructed from any of the hourly average-sample types considered here are less than the 1.0 nT resolution of standard databases. We recommend that observatories and World Data Centers continue the standard practice of reporting simple 1-h-average hourly values

    The ννγ\nu \nu \gamma Amplitude in an External Homogeneous Electromagnetic Field

    Full text link
    Neutrino-photon interactions in the presence of an external homogeneous constant electromagnetic field are studied. The ννγ\nu \nu \gamma amplitude is calculated in an electromagnetic field of the general type, when the two field invariants are nonzero.Comment: 7 pages, 1 figur

    Metamaterials: optical activity without chirality

    No full text
    We report that the classical phenomenon of optical activity, which is traditionally associated with chirality (helicity) of organic molecules, proteins, and inorganic structures, can be observed in artificial planar media which exhibit neither 3D nor 2D chirality. We observe the effect in the microwave and optical parts of the spectrum at oblique incidence to regular arrays of nonchiral subwavelength metamolecules in the form of strong circular dichroism and birefringence indistinguishable from those of chiral three-dimensional media
    • …
    corecore