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Abstract. A time and frequency-domain analysis is made of
the effects of averaging and sampling methods used for con-
structing magnetic-observatory hourly data values. Using 1-
min data as a proxy for continuous, geomagnetic variation,
we construct synthetic hourly values of two standard types:
instantaneous “spot” measurements and simple 1-h “boxcar”
averages. We compare these average-sample types with oth-
ers: 2-h average, Gaussian, and “brick-wall” low-frequency-
pass. Hourly spot measurements provide a statistically unbi-
ased representation of the amplitude range of geomagnetic-
field variation, but as a representation of continuous field
variation over time, they are significantly affected by alias-
ing, especially at high latitudes. The 1-h, 2-h, and Gaussian
average-samples are affected by a combination of amplitude
distortion and aliasing. Brick-wall values are not affected by
either amplitude distortion or aliasing, but constructing them
is, in an operational setting, relatively more difficult than it
is for other average-sample types. It is noteworthy that 1-h
average-samples, the present standard for observatory hourly
data, have properties similar to Gaussian average-samples
that have been optimized for a minimum residual sum of
amplitude distortion and aliasing. For 1-h average-samples
from medium and low-latitude observatories, the average of
the combination of amplitude distortion and aliasing is less
than the 5.0 nT accuracy standard established by Intermag-
net for modern 1-min data. For medium and low-latitude
observatories, average differences between monthly means
constructed from 1-min data and monthly means constructed
from any of the hourly average-sample types considered here
are less than the 1.0 nT resolution of standard databases. We
recommend that observatories and World Data Centers con-
tinue the standard practice of reporting simple 1-h-average
hourly values.
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1 Introduction

Since magnetic observatories first began operating around
the world in the middle of the 19th century, one of their most
important products has been hourly data values. Historical
hourly observatory data are useful for a variety of applica-
tions (e.g.Parkinson, 1983; Courtillot and Le Moüel, 1988;
Barraclough et al., 1992; Prölss, 2004), including studying
geomagnetic secular variation originating in the core (e.g.
Sabaka et al., 2004), exploring the electrical conductivity of
the mantle (e.g.Egbert et al., 1992), mapping electric cur-
rents in the ionosphere (e.g.Campbell, 1989), measuring the
intensity of magnetospheric storms (e.g.Karinen and Mur-
sula, 2005), and estimating long-term solar-terrestrial inter-
action (e.g.Macmillan and Droujinina, 2007). In conducting
these, and other types of analyses, it is important, and some-
times even essential, to have an understanding of the effects
of amplitude distortion and aliasing caused by averaging and
sampling procedures used in the production of hourly data.

The means of acquiring hourly observatory data have
evolved with the advancement of measurement technology
and in response to researcher demands for data that meet
increasingly stringent quality standards. The oldest obser-
vatory hourly data were obtained by on-site personnel us-
ing instruments that permitted essentially instantaneous vi-
sual measurement of magnetic-field direction and intensity.
With the introduction of photographic recording systems
(Brooke, 1847), the process of acquiring hourly data be-
came semi-automated. Following a daily schedule, an obser-
vatory worker would develop the photographic paper, and,
then, using an etched piece of glass, directly measure the
amplitudes of the time series traces recording magnetic-field
variation. At first these were “spot” measurements, sim-
ilar, in some respects, to direct instantaneous visual mea-
surements. In the early 20th century, following the recom-
mendation ofSchmidt(1908), observatories began to report
hourly means, with 1-h average values recorded once per
hour (Chapman and Bartels, 1962, Ch. 2.14). These were ei-
ther directly estimated from the paper photographic records,
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or, more formally, they were calculated from multiple sub-
hour spot measurements. The switch from making spot mea-
surements to producing average values came gradually: in
Great Britain (Eskdalemuir) it was made in 1912 (Meteoro-
logical Office, 1914, p. 68), in the United States at all ob-
servatories in 1915 (e.g.Hazard, 1918, p. 5), and at some
observatories in France (Chambon la Forêt) not until 1972
(Fouassier and Chulliat, 2009, p. 87). Today, constructing
hourly means is done by computer, averaging digital 1-min
data acquired by electronic systems.

Because the historical hourly observatory data are a mix-
ture of spot measurements and hourly averages, their prop-
erties have changed over time, and their time series can be
described as being “inhomogeneous”. Spot sampling can
sometimes, and fortuitously, give a good record of short-
duration transient magnetic-field variation. Spot sampling
can also sometimes, and unfortunately, miss transient varia-
tion altogether. It all depends on when and how frequently
samples are taken relative to when and over what duration
the field variation occurs. If we assume, as is reasonable,
that spot measurements are collected independently of field
variation, then numerous spot measurements collected over
a long period of time will represent an unbiased statistical
sampling of the amplitude range of magnetic-field variation.
On the other hand, averaging reduces the amplitude of high-
frequency variation, giving a time series that is smoother than
actual magnetic-field variation. The statistical variance of
discrete 1-h-average values will be less than that of the mag-
netic field’s actual variation, and it will be less than that of in-
stantaneous, spot measurements. Since magnetic-field vari-
ation occurs over an extremely broad range of frequencies,
discrete hourly sampling, be it done with spot measurement
or with an averaging window, will result in aliasing, with
high-frequency amplitudes being mapped into estimates of
low-frequency amplitudes.

Researchers often use a combination of spot and hourly-
average observatory data, as if, together, they represent a
reliable long-term record of magnetic-field variation. It is,
therefore, natural to ask: can we measure differences in the
properties of hourly spot and hourly average values so that
informed decisions can be made about using them? How do
spot and hourly averages compare with other hypothetical
average-sample types that might be proposed in the future
as candidate observatory products? In seeking answers to
these and other related questions, we examine the properties
of hourly observatory data, measuring their variance, relative
proportionality, correlation, autocorrelation, spectral power,
amplitude distortion, and aliasing. Assuming that 1-min data
are a good representation of continuous magnetic-field varia-
tion, we construct several types of synthetic hourly average-
samples from 1-min data collected from observatories situ-
ated at different latitudes. We employ standard methods of
continuous (e.g.Bracewell, 1978; Kanasewich, 1981) and
statistical (e.g.Lee, 1960; Bendat and Piersol, 2000) time-
series analysis.

2 Data

In Table 1 we summarize the data we use. The 1-min data
are definitive (processed and calibrated) magnetic-vector val-
ues collected at observatories (Jankowski and Sucksdorff,
1996; Love, 2008) that meet Intermagnet standards (Ker-
ridge, 2001; Rasson, 2007); we obtained the 1-min data from
the Intermagnet website (www.intermagnet.org) for observa-
tories situated at high (Barrow BRW), medium (Chambon
la For̂et CLF), and low (Huancayo HUA) geomagnetic lat-
itudes. They record a variety of magnetic-field variation,
with high (low) latitude variation dominated by active au-
roral (equatorial) electrojets (e.g.Parkinson, 1983; Prölss,
2004), and medium-latitude variation being relatively more
quiescent. Each 1-min magnetic-vector datum was formed
from sub-minute electronic signals acquired from a tri-axial
fluxgate magnetometer. The signals were both analog and
digitally filtered, effectively eliminating aliasing from vari-
ation with periods of less than 1-min (frequencies greater
0.0167 Hz). Additional measurements, made once a week
or so from a reference pier at each observatory site, were
combined with the fluxgate measurements to construct time
series that have an accuracy, measured in absolute terms over
many years, of better than 5.0 nT (0.50′). Each 1-min datum
has a time stamp that is centered on the top of the universal-
time (UT) minute (HR:MN:SC, 00:00:00, 00:01:00, etc.).
For BRW and HUA, we use almost a complete solar cycle
of data (1998.0–2009.0), and for CLF we use almost two so-
lar cycles of data (1991.0–2009.0).

The hourly values we use were acquired at Chambon la
For̂et (CLF) for the years 1954.0–1990.0 (more than three
solar cycles) and at Eskdalemuir (ESK) for the years 1917.0–
1947.0 (almost three solar cycles). These are available in
computer-readable format from the website of the World
Data Center “CE” in Copenhagen (now Edinburgh), hav-
ing been either transcribed from printed observatory year-
book values or constructed from digital minute data. Prior to
1972.0 (1932.0) the CLF (ESK) data are spot samples (1-h
means) centered on the top of the Greenwich hour (00:00:00,
01:00:00, etc.) (Fouassier and Chulliat, 2009; Meteorologi-
cal Office, 1933). After 1972.0 (1932.0) they are, for both
CLF and ESK, 1-h means centered on the bottom of each
hour (00:30:00, 01:30:00, etc.) (Fouassier and Chulliat,
2009; Meteorological Office, 1934), as is now the standard
among other observatories.Martini and Mursula(2006) and
Svalgaard and Cliver(2007) have noted that the WDC-CE
pre-1932 ESK holdings are an interpolation of hourly values
centered at the top of each hour (00:00:00, 01:00:00, etc.) –
adjacent values in time have been averaged together to give
2-h average-samples, one per hour and centered on the bot-
tom of the hour1. We use the CLF-CE data to investigate

1This was probably done with the intent of making the data eas-
ier to use, but the result is actually the opposite for anyone wishing
to conduct a detailed analysis. The pre-1932.0 ESK observatory
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Table 1. Summary of observatories and data used. Geomagnetic latitudes are calculated for a 2005 dipole.

Code Observatory name Region Data used Years Geomag. Lat. Present supporting institute

BRW Barrow Alaska min Intermagnet 1998.0–2009.0 69.6◦ US Geological Survey
CLF Chambon la For̂et France min Intermagnet 1991.0–2009.0 49.8◦ Institut de Physique du Globe de Paris
HUA Huancayo Peŕu min Intermagnet 1998.0–2009.0 −1.8◦ Instituto Geofisico

CLF Chambon la For̂et France h WDC-CE 1954.0–1990.0 49.8◦ Institut de Physique du Globe de Paris
ESK Eskdalemuir Britain h WDC-CE 1917.0–1947.0 57.8◦ British Geological Survey

differences between hourly spot samples and 1-h averages.
We use the ESK-CE data to investigate the effects of heavy
averaging.

For both the 1-min data and hourly values, we use
geographic-polar (horizontalH , declinationD, vertical Z)
magnetic-vector components. When these are the com-
ponents in the WDC database, then we use them without
any modification, otherwise, if and when cartesian (north
X, eastY ) horizontal components are reported, then we
calculate(D,H) appropriately. Data spikes are identified
with a simple computer algorithm; these are removed and,
along with occasional data gaps, filled with interpolated val-
ues. The British Geological Survey’s annual-means database
(www.geomag.bgs.ac.uk) contains a list of small step-offsets
in the historical time series; some are also documented in ob-
servatory yearbooks. Most step offsets are obvious from in-
spection of the data; they are the result of moving the obser-
vatory’s reference pier, changes in measurement method, or
uncontrolled contamination. We insert complementary step-
offsets into the historical observatory time series in order to
bring them into continuity. The details of these adjustments
do not significantly affect the results that follow.

3 Theory

The standard averaging and sampling methods that are used
for constructing observatory hourly values are mathemati-
cally equivalent to passing a continuous magnetic-field time
series through a zero-phase-delay linear filter, and, then, dis-
cretely sampling the output once per hour. In this section of
mathematical review, we examine the properties of different
averaging and sampling types in the dual domains of time
and frequency. The average-samples are simple, and they in-
clude the standard spot and 1-h averages used for construct-
ing hourly values, as well as other average-sample types use-
ful for comparison.

yearbooks record data inXYZ coordinates, but the pre-1932.0
WDC-CE holdings are inHDZ coordinates – another indication
that the data were manipulated at some point after first reporting.
Furthermore, the pre-1932.0 ESK digital holdings of WDC Kyoto
are different from those of WDC-CE. Indeed, the WDC-K data ap-
pear to be close to the original yearbook data, but there are some
formatting problems with the WDC-format version of the ESK-K
data.

For notation, we represent the time series of an arbitrary
magnetic-vector component asB(t), which is a function of
time t , and which can stand for any ofH(t),D(t),Z(t), etc.
We assume thatB(t) is well behaved: it is finite, continu-
ous, and integrable. These qualities pertain to any natural
magnetic-field time series measured over a finite duration
of time and that might be generated from classical physical
processes. Therefore, once the data have been detrended, a
Fourier-type analysis can be reasonably pursued. We use a
Fourier transformationF having a “unitary” normalization
for ordinary frequenciesf , wheret = 1/f . For a signalB(t)

in the time domain, its dual in the frequency domain,B̃(f ),
is given by

B̃(f ) =F{B(t)} =

∫
+∞

−∞

B(t)e−2π if tdt. (1)

Inverse Fourier transformation is given by

B(t) =F−1
{B̃(f )} =

∫
+∞

−∞

B̃(f )e2π if tdf. (2)

The unitary normalization is used in the classic textbook by
Bracewell(1978, p. 6); it is different from the non-unitary
normalization for angular frequencies used byLee (1960,
p. 33). In most respects, this is a technical distinction, one
that does not affect a qualitative understanding of the theory
and results that follow.

3.1 Simple running averaging

We begin by considering the straightforward running aver-
age of a geomagnetic time series. With a rectangle-in-time
or “boxcar” function, simple averaging is defined over a du-
ration of timeta by convolution of

rect(t;ta) ≡

{
1 |t | < ta/2
0 |t | > ta/2

(3)

with the natural, continuous magnetic-field time seriesB(t),

Ba(t) =
1

ta
B(t)∗ rect(t;ta) (4)

=
1

ta

∫
+∞

−∞

B(ζ )rect(t −ζ ;ta)dζ

=
1

ta

∫ t+ta/2

t−ta/2
B(ζ )dζ.
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Fourier transformation of the rectangle function in the time
domain is a sinc function in the frequency domain,

1

ta
F{rect(t;ta)} =

sin(πf/fa)

πf/fa
≡ sinc(f ;fa) (5)

(Bracewell, 1978, p. 389), wherefa= 1/ta.
By the convolution theorem (Lee, 1960, p. 28;Bracewell,

1978, Ch. 3), the Fourier transform of convolution in the
time (frequency) domain is equal to multiplication in the fre-
quency (time) domain,

F{B(t)∗ rect(t;ta)} =F{B(t)}F{rect(t;ta)}. (6)

With this,

F{Ba(t)} = B̃a(f ) = B̃(f )sinc(f ;fa), (7)

whereB̃(f ) is the frequency-domain dual ofB(t). The func-
tion sinc(f ;fa) gives the mapping from̃B(f ) to B̃a(f ); it is
a “frequency-response” function (Bracewell, 1978, p. 179;
Kanasewich, 1982, Ch. 5.3) that describes the amplitude dis-
tortion of the time series in the frequency domain due to av-
eraging. It is useful, now, to define the amplitude differences

Aa(t) = B(t)−Ba(t) and Ãa(f ) = B̃(f )− B̃a(f ), (8)

which measure the signal in the original, continuous time se-
ries that is not modelled by the running average. For a geo-
magnetic reference to related issues, seeChapman and Bar-
tels(1962, Ch. 16.17).

3.2 Low-pass brick-wall filtering

A low-pass “brick-wall” filter is most easily defined in the
frequency domain (Bracewell, 1978, p. 52;Kanasewich,
1981, Ch. 15): it has a flat response below some chosen
truncation frequencyfb/2, and it admits nothing above that
frequency. Because the brick-wall filter has these proper-
ties, it is sometimes described as “ideal”. It is prescribed
by multiplication of the Fourier amplitudes by a rectangle-
in-frequency function

B̃b(f ) = B̃(f )rect(f ;fb), (9)

and, correspondingly, by convolution in the time domain
with a sinc function,

F−1
{
B̃b(f )

}
= Bb(t) =

1

tb
B(t)∗sinc(t;tb). (10)

The difference between the original, continuous time series
and the filtered time series is equal to unresolved frequencies
abovefb/2,

Ab(t) = B(t)−Bb(t) and Ãb(f ) = B̃(f )− B̃b(f ), (11)

but there is no difference for frequencies belowfb/2.
Brick-wall filtering has two potential drawbacks. First, in

the time domain,Bb(t) will show oscillations or “ringing”

near discontinuities or abrupt changes in the original, unfil-
tered time seriesB(t) (Bracewell, 1978, p. 209;Kanasewich,
1981, p. 240). This is the Gibbs phenomenon. It is usually
illustrated in textbooks by convolving a sinc function with a
Heaviside step function; since the sinc function has oscilla-
tory tails, the output of the convolution is also, to some de-
gree, oscillatory. While natural geomagnetic time series have
no discontinuities, they do sometimes record abrupt varia-
tion, such as during storm sudden commencements. For this
reason, the representation of a geomagnetic time series in
terms of a brick-wall-truncated Fourier expansion will have
ringing, which can be reasonably described as a Gibbs effect.
But as we shall see, this does not significantly affect individ-
ual hourly samples of a brick-wall-filtered time series.

The second potential drawback of brick-wall filtering con-
cerns its practical implementation. In comparison to the
other average-sample types considered here, it is relatively
more difficult to use brick-wall filtering to obtain hourly val-
ues. Accurate results require a long time series to be treated
in the frequency domain. In contrast, simple boxcar aver-
aging only requires one or two hours of data, and these can
be treated in a straightforward way in the time domain; long
time series are not needed to obtain accurate results. This
simple point is especially relevant for institutes needing to
promptly provide data for real-time operational applications.

3.3 Gaussian filtering

In the time domain, a Gaussian filter is defined as

gaus(t;tσ ) ≡ exp
(
−πt2/t2

σ

)
, (12)

for which time-domain convolution is given by

Bσ (t) =
1

tσ
B(t)∗gaus(t;tσ ). (13)

The Fourier transform of a Gaussian is another Gaussian,

F{gaus(t;tσ )} =
1

fσ

gaus(f ;fσ ) (14)

(Bracewell, 1978, p. 386), wherefσ = 1/tσ . In a qualita-
tive sense, this time-frequency symmetry places the Gaus-
sian filter midway between the two extremes of time-domain
(frequency-domain) rectangle (sinc-function) filtering and
sinc-function (brick-wall) filtering. The width of the Gaus-
sian filter is specified bytσ , and, in Sect.5.7, we will locate
an optimal value. We note that Intermagnet recommends a
Gaussian filter for the production of 1-min averages, but they
do not make any similar recommendation for hourly values.

3.4 Spot sampling

For a constant sampling frequencyfs with discrete sample
times

tj = t1,t2,t3,· · · (15)
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that are equally-spaced withtj+1− tj = ts= 1/fs, we can de-
fine a Dirac comb function as a sequence of equally-spaced
delta functions,

comb(t;ts) ≡ ts
∑
j

δ(t −j ts) =

∑
j

δ(t/ts−j) (16)

(Bracewell, 1987, p. 77;Kanasewich, 1981, pp. 34, 110).
With this, instantaneous or “spot” sampling of a time series
can be described as a multiplication of the original, continu-
ous time series by the Dirac comb,

Bs(tj ) = B(t)comb(t;ts) = (17)

· · ·B(−2ts),B(−ts),B(0),B(+ts),B(+2ts),· · ·

(Bracewell, 1978, p. 78;Kanasewich, 1981, p. 35). Since the
Fourier transform of a Dirac comb is another Dirac comb,

F{comb(t;ts)} =
1

fs
comb(f ;fs), (18)

in the frequency domain, convolution results in the superpo-
sition of an infinite sequence of replicas ofB̃(f ), each one
shifted by a multiple of the sampling frequency,

F{Bs(tj )} =
1

fs
B̃(f )∗comb(f ;fs) (19)

=

∑
k

B̃(f −kfs).

For a continuous time series defined across an infinite range
of frequencies, it is impossible to fully resolve its frequency
content with a discrete set of spot samples, even if we have
an infinite number of them. This limitation is the result of
“aliasing”, and it can be understood from consideration of
Eq. (19). Harmonic amplitudes for frequencies below, for ex-
ample,fs/2 will have mapped onto them the amplitudes for
frequencies abovefs/2, something that results in contamina-
tion of estimates of the frequency content of the original time
series. More specifically, consider a single Fourier harmonic
with frequency 0.3fs. With discrete sampling, it cannot be
distinguished from a harmonic with frequency 0.7fs, or one
with a frequency of 1.3fs, etc. There are an infinite number
of aliases, each having a different frequency.

If a continuous time series contains only a compact range
of frequencies, such that̃B(f ) is zero outside of the band
|f | < fs/2, then the replicas̃B(f −kfs) in Eq. (19) are non-
overlapping. In this case, there will be no aliasing and Shan-
non’s theorem (Bracewell, 1978, Ch. 10;Kanasewich, 1981,
p. 117) applies: sampling at twice Nyquist,fs = 2fN , is
sufficient to make a complete reconstruction of the original,
continuous time series. To see this, consider the frequency-
limited version of Eq. (19),

B̃s(f ) =
1

fs

[
B̃(f )∗comb(f ;fs)

]
rect(f ;fs) (20)

=

∑
k

B̃(f −kfs)rect(f ;fs).

If B̃(f ) has no frequency content above Nyquist, then only
thek = 0 term contributes to the summation, in which case,

B̃s(f ) = B̃(f )rect(f ;fs) = B̃(f ). (21)

In the time domain, the dual of Eq. (20) is the Whittaker-
Shannon “cardinal” formula (Bracewell, 1978, p. 413),

Bs(t) =
1

ts
[B(t)comb(t;ts)] ∗sinc(t;ts). (22)

The presence of the rectangle function in Eq. (20) makes
clear the noteworthy property of Whittaker-Shannon inter-
polation: it does not introduce any spurious amplitudes with
frequencies above Nyquist, and it does not change any am-
plitudes with frequencies below Nyquist. For these reasons,
it is sometimes called an “ideal” interpolator. If̃B(f ) has
no frequency content above Nyquist, then we can infer from
Eq. (21) that

Bs(t) =
1

ts
B(t)∗sinc(t;ts) = B(t). (23)

A limited-frequency, continuous time series is, thus, recon-
structed from spot samples by Whittaker-Shannon interpola-
tion.

The situation of interest, here, is slightly messier. A con-
tinuous magnetic-field time seriesB(t) has variation across a
range of frequencies that is so broad that it might as well be
considered infinite. But for a sampling given by (ts,fs), we
cannot resolve amplitudes with frequencies above Nyquist.
That is, we are unable resolve the following signal

Ũs(f ) = B̃(f )[1− rect(f ;fs)], (24)

Us(t) =
1

ts
B(t)∗[δ(t)−sinc(t;ts)]. (25)

Aliasing is given by

S̃s(f ) =

∑
k 6=0

B̃(f −kfs)rect(f ;fs), (26)

and, although non-standard, it is useful to view aliasing in
the time domain,

F−1
{S̃s(f )} = Ss(t). (27)

This has the spot values

Ss(tj ) = (28)

· · ·Ss(−2ts),Ss(−ts),Ss(0),Ss(+ts),Ss(+2ts),· · ·

which might be interpreted as “errors” in a frequency-limited
representation of the original time series. For a qualitative
discussion of aliasing in the context of geomagnetism, see
Chapman and Bartels(1962, Ch. 16.14).

As with the amplitude differences defined by Eqs. (8)
and (11), it is useful to define the residual differences be-
tween the original, continuous time series and the Whittaker-
Shannon interpolation of spot samples,

Rs(t) = B(t)−Bs(t) and R̃s(f ) = B̃(f )− B̃s(f ), (29)
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where Bs(f ) and Bs(t) are given by Eqs. (20) and (22).
These residuals are equal to the difference between the un-
resolved, high-frequency signal and that of aliasing,

Rs(t) = Us(t)−Ss(t) and R̃s(f ) = Ũs(f )− S̃s(f ), (30)

from Eqs. (24)–(27).

3.5 Spot sampling of a running average

Combining results, discrete average-sampling of a continu-
ous time series is given by

Bas(tj ) = Ba(t)comb(t;ts) (31)

= ·· ·Ba(−2ts),Ba(−ts),Ba(0),Ba(+ts),Ba(+2ts),· · ·

Its time-continuous Whittaker-Shannon interpolation is

Bas(t) =
1

ts
[Ba(t)comb(t;ts)] ∗sinc(t;ts) (32)

=
1

tats
[[B(t)∗ rect(t;ta)] comb(t;ts)] ∗sinc(t;ts)

and

B̃as(f ) =
1

fs

[
B̃a(f )∗comb(f ;fs)

]
rect(f ;fs) (33)

=
1

fs

[[
B̃(f )sinc(f ;fa)

]
∗comb(f ;fs)

]
rect(f ;fs).

The frequency-domain residual difference is given by

R̃as(f ) = B̃(f )− B̃as(f ) (34)

= Ũs(f )+ L̃as(f ) = Ũs(f )+ Ãas(f )− S̃as(f ).

The unresolved, high-frequency signal is given by Eq. (24).
The low-frequency residual,

L̃as(f ) = Ãas(f )− S̃as(f ), (35)

is the difference between amplitude distortion,

Ãas(f ) = Ãa(f )rect(f ;fs), (36)

whereÃa(f ) is given by Eq. (8), and aliasing,

S̃as(f ) = B̃as(f )− B̃a(f )rect(f ;fs), (37)

which should be compared with Eq. (26). Each of these am-
plitude distortion and aliasing terms can, of course, be ex-
pressed in the time domain as well.

The output of average-sampling depends on the chosenta
andts (or, equivalently,fa andfs) and the details of the con-
tinuous time series itself. The standard practice of reporting
1-h-averages, once per hour, corresponds tota= ts (fa= fs).
We have often heard it said that such average-samples are
contaminated by aliasing, and that this might be remedied
by, for example, increasing the averaging time from 1-h to
2-h, corresponding tota = 2ts (2fa = fs). But since there is
considerable natural geomagnetic activity at periods below

2 h, heavier averaging will also result in significant ampli-
tude distortion. Therefore, it is important to consider the
combined effects of averaging and sampling on the contin-
uous time series of interest: prominent Fourier amplitudes
having periods that are much longer (shorter) than the aver-
aging duration will not be (will be) significantly affected by
amplitude distortion. If high-frequency Fourier amplitudes
are relatively very small (very large), such as for what is of-
ten called a “red” (“blue”) spectrum, then aliasing might not
be (could be) very important. SeeKirchner(2005) for a dis-
cussion of the effects of averaging and sampling a time series
having 1/f noise.

4 Numerical analysis

To decompose observatory data in terms of Fourier series, we
first detrend each time series by subtracting a slowly chang-
ing, non-periodic trendline. The physical origin of this time-
dependent trendline is the superposition of crustal magne-
tization beneath each observatory, which affects the aver-
age value of the trendline, and the time-varying main field
sustained by the core’s dynamo, which affects the average
value and the time dependence of the trendline. For each ob-
servatory, we approximate this internal-field time series by
Chebyshev polynomials of the first kind (Press et al., 1992,
“chebev”). There is precedence for this choice of basis func-
tion in geomagnetic analyses (e.g.Bloxham and Jackson,
1989), made because of the rapid rate with which Chebyshev
expansion coefficients converge when approximating smooth
functions (e.g.Conte and de Boor, 1980). A low-degree trun-
cation of the Chebyshev expansion is fitted to the observatory
data using a least-squares algorithm. Results are not, how-
ever, particularly sensitive to the truncation level (we choose
one Chebyshev degree per 2 years of data), since the hourly
samples are “high frequency” compared to the shortest char-
acteristic timescale of the subtracted trendline.

We make transformations back and forth between the time
and frequency domains by computer application of a fast-
Fourier transform (Press et al., 1992, “realft”). This al-
gorithm usesNB = 2N data (amplitudes) in the time (fre-
quency) domain, whereN is an integer. The Fourier trans-
formation of a discrete data set can be represented as

F{B(tj )} = B̃(fk). (38)

In the time domain, the discrete data

B(tj ) = B(t1),B(t2),B(t3),· · · (39)

are assumed to be evenly-spaced, with a sampling interval
ts= 1/fs. In the frequency domain, the amplitude pairs

[sB̃(fk),cB̃(fk)] = (40)

[sB̃(f0),cB̃(f0)],[sB̃(f1),cB̃(f1)],[sB̃(f2),cB̃(f2)],· · ·
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correspond to sine and cosine functions (denoted by thes and
c prescripts), with the evenly-spaced discrete frequencies

fk = kfs/NB = 0,fs/NB ,2fs/NB ,· · · (41)

As an approximation of continuous magnetic-field variation
at each observatory, we use 1-min data. From them we syn-
thesize approximate average-samples that are similar to his-
torical (or possibly, prospective) reported observatory hourly
values. But in order to facilitate comparison of results with
the source 1-min data in both the time and frequency do-
mains, instead of sampling the source 1-min time series once
per hour, we sample them once every 64= 26 min. This
means that forNB 1-min data, the firstNB/64 Fourier ampli-
tudes can be directly compared with theNB/64 Fourier am-
plitudes from the “hourly” samples – they correspond to the
same harmonics over the same total duration of time. For our
purposes, this 64-min “hour” sampling period is sufficiently
close to a normal 60-min hour.

Five different synthetic average-sample types, each con-
structed from the source minute data, are considered:

1. “Spot” samples, with no actual averaging,

Bs(tj ) = B(tj ). (42)

2. 1-“hour” rectangle averages fromt1 = 65 min of data,

B1s(tj ) =
1

t1

m=+32∑
m=−32

B(tj+m)rect(tj+m;t1). (43)

3. 2-“hour” rectangle averages fromt2 = 129 min of data,

B2s(tj ) =
1

t2

m=+64∑
m=−64

B(tj+m)rect(tj+m;t2). (44)

4. Gaussian averages withtσ = 55 min,

Bσs(tj ) =
1

tσ

m=+∞∑
m=−∞

B(tj+m)gaus(tj+m;tσ ). (45)

5. Brick-wall (sinc) averages,

Bbs(tj ) =
1

tb

m=+∞∑
m=−∞

B(tj+m)sinc(tj+m;tb). (46)

In each case, summation over 1-min data is denoted by the
subscriptm. The subscriptj can, in principle, denote any
sampling rate less than or equal to 1-min.

We will use both 1-min and 64-min sampling. With 1-min
sampling, results correspond to “continuous” time series. For
example, if thetj are taken as minute sample times, then
the corresponding spot samples are the same as the source
1-min data,Bs(tj ) = B(tj ) ' B(t). With 64-min sampling,
results correspond to discrete “hourly” samples of the time

series. Our choice, in Eqs. (43) and (44), to sum over 65
and 129 min of data, instead of 64 and 128, is motivated by
the need to keep these average-samples symmetric in time
and comparable to the other average-sample types. In prac-
tice, the summations in Eqs. (45) and (46) need to be taken
over sufficiently large number of data to ensure convergence.
However, it is easier to construct (46) by band-pass filtering
in the frequency domain. In principle,tb can be anything we
want it to be, but it is usually set equal to twice the sampling
interval,tb = 2ts, which is what we do.

5 Results

5.1 Frequency spectra of historical CLF data

The power spectral density for a time seriesB(t) is defined
by a “periodogram” (Kanasewich, 1981, Sect. 7.1),

P B(f ) = lim
T →∞

1

T

∣∣∣∣∣
∫

+T/2

−T/2
B(t)e−2π if tdt

∣∣∣∣∣
2

, (47)

and the display ofP B(f ) in a graph as a function of fre-
quencyf is a “spectrum”. The discrete power spectral den-
sity, for each unit of frequency, is given by

P B(fk) =
2

N2
B

{
|sB̃(fk)|

2
+|cB̃(fk)|

2
}
. (48)

In Fig. 1a we show power spectraP H (f ) for two 18-year
durations of CLF horizontal-intensity hourly values: 1954.0–
1972.0 (hourly spot measurements) and 1972.0–1990.0 (1-h
averages). Regular solar-quiet variation is seen as prominent
diurnal peaks with frequencies of 1/d, 2/d, etc. (e.g.Olsen,
2007). Magnetic storms and disturbance are seen as a broad
wash of energy across the entire range of frequencies, with
a gradual “red-spectrum” decrease in energy with increasing
frequency.

Important for this study are the differences in the spec-
tra between the older pre-1972.0 data, when reported hourly
values were spot measurements, and the newer post-1972.0
data, when reported hourly values were 1-h average-samples.
The spectral power for spot measurements is higher at high
frequencies than that for 1-h average-samples. Since spec-
tral differences might simply be reflective of different levels
of activity, these observations, on their own, are not suffi-
cient to prove that different average-sample types (spot and
average) suffer from different amounts of amplitude distor-
tion and aliasing. But what we see in Fig. 1a is enough to
motivate further investigation. We will return, at the end of
Sect.5.3, to discuss Fig. 1b.

5.2 Example of average-sampling during a storm

Using 1-min CLF-H source data, 1991.0–2009.0, and for-
mulas (42) and (43), we generated synthetic “spot” sam-
ples, “continuous” running averages, and discrete “hourly”
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Fig. 1. Comparison of (a) power spectral density PH(f) as a func-
tion of frequency f for historical hourly CLF-H data for years when
instantaneous spot’ values were reported, 1954.0-1972.0 (black),
and when 1-hr average-samples were reported, 1972.0-1990.0 (red);
(b) synthetic spot samples (black) and 1-hr average-samples (red),
each constructed from 1-min CLF-H data, 1991.0-2009.0.

to motivate further investigation. We will return, at the end
of Sec. 5.3, to discuss Fig. 1(b).

5.2 Example of average-sampling during a storm

Using 1-min CLF-H source data, 1991.0-2009.0, and for-
mulas (42) and (43), we generated synthetic ‘spot’ sam-
ples, ‘continuous’ running averages, and discrete ‘hourly’
average-samples. In Fig. 2 we show results for a period
of time recording a large magnetic storm (October 2003).
As expected, we see in Fig. 2(a) that spot samples Hs(tj)
sometimes record the extreme amplitudes of transient vari-
ation, such as for the dramatic initial phase of this storm

(Day 302.3) and during the storm’s second main phase
(Day 303.8 – 304.1), while at other times transient variation
is missed, such as during the hours immediately following
the initial phase (Day 302.4). Magnetic-field variation at fre-
quencies higher than Nyquist is not well represented by spot
sampling, and because of this there is substantial aliasing,
Ss(tj) Eq. (28). The signals of continuous interpolations of
the spot samples, Hs(t) Eq. (22), and the discrete aliases,
Ss(t) Eq. (27), show Gibbs ringing. This tends to be corre-
lated with spot samples that happen to fall on the extremes
of the 1-min variation. Otherwise, before and after periods
of rapid variation, ringing tends to occur in between spot val-
ues. The later is a result of the fact that for ts = 1 hr the sinc
function has zero crossings at integer hours, a point we will
examine again in Sec. 5.8.

In Fig. 2(b) we see that continuous, running averaging
gives a smooth representation of the original time series, but
the extreme amplitudes of storm-time variation are smoothed
out. We have described this as amplitude distortion, A1(t)
Eq. (8). Discrete sampling of the averaged time series has a
continuous signal, H1s(t) Eq. (32), with less Gibbs ringing
than that for spot sampling, and a low-frequency residual,
L1s(t) Eq. (35), that is, on average, less than aliasing of spot
sampling.

5.3 Frequency spectra of different average-samples

Using, again, 1-min CLF-H source data, 1991.0-2009.0, we
used formulas (42) to (46) to generate a variety of average-
sample types. In Fig. 3(a) we see that the hourly spot sam-
ples have a spectrum PHs (f) that is generally like ‘continu-
ous variation’ that is approximated by 1-min data PH(f).
However, at high frequencies, near the Nyquist frequency
(∼ 0.5 cycles/hr), the energy of the hourly spot spectrum
is higher than that for the 1-min data. This lifting of the
high-frequency end of the hourly spectrum is entirely due to
aliasing, S̃s(f) Eq. (26). In Fig. 3(b) we show the spectrum
of aliasing PSs (f), which can be recognized as the reflection
of the 1-min spectrum through the Nyquist frequency. Be-
cause the 1-min spectrum is ‘red’, reflection through Nyquist
results in an aliasing spectrum that is ‘blue’, and for this rea-
son, aliasing is most easily seen in Fig. 3(a) for frequencies
immediately below Nyquist.

More interesting are the spectra for 1-hr average-samples,
Fig. 3(c). The spectrum PH1 (f) of continuous running aver-
ages is depressed at high frequencies compared to the 1-min
spectrum PH(f) by an amount equal to the square of the
amplitude-distorting, frequency-response factor, sinc2(f ; f1)
Eq. (7). While the spectrum of discretely-sampled 1-hr av-
erage values PH1s (f) is slightly lower than that of the 1-min
data, it is also slightly higher than the spectrum for continu-
ous running averages. Again, this difference is due to alias-
ing, S̃1s(f) Eq. (37). In Fig. 3(d) we show the low-frequency
residual spectrum, PL1s(f) Eq. (35), and the aliasing spec-
trum, PS1s(f) Eq. (37). Energy in the residual spectra in-

Fig. 1. Comparison of(a) power spectral densityPH (f ) as a func-
tion of frequencyf for historical hourly CLF-H data for years when
instantaneous “spot” values were reported, 1954.0–1972.0 (black),
and when 1-h average-samples were reported, 1972.0–1990.0 (red);
(b) synthetic spot samples (black) and 1-h average-samples (red),
each constructed from 1-min CLF-H data, 1991.0–2009.0.

average-samples. In Fig. 2 we show results for a period
of time recording a large magnetic storm (October 2003).
As expected, we see in Fig. 2a that spot samplesHs(tj )

sometimes record the extreme amplitudes of transient vari-
ation, such as for the dramatic initial phase of this storm
(Day 302.3) and during the storm’s second main phase
(Day 303.8–304.1), while at other times transient variation
is missed, such as during the hours immediately following
the initial phase (Day 302.4). Magnetic-field variation at fre-
quencies higher than Nyquist is not well represented by spot
sampling, and because of this there is substantial aliasing,
Ss(tj ) Eq. (28). The signals of continuous interpolations of

the spot samples,Hs(t) Eq. (22), and the discrete aliases,
Ss(t) Eq. (27), show Gibbs ringing. This tends to be corre-
lated with spot samples that happen to fall on the extremes
of the 1-min variation. Otherwise, before and after periods
of rapid variation, ringing tends to occur in between spot val-
ues. The later is a result of the fact that forts = 1 h the sinc
function has zero crossings at integer hours, a point we will
examine again in Sect.5.8.

In Fig. 2b we see that continuous, running averaging gives
a smooth representation of the original time series, but the ex-
treme amplitudes of storm-time variation are smoothed out.
We have described this as amplitude distortion,A1(t) Eq. (8).
Discrete sampling of the averaged time series has a contin-
uous signal,H1s(t) Eq. (32), with less Gibbs ringing than
that for spot sampling, and a low-frequency residual,L1s(t)

Eq. (35), that is, on average, less than aliasing of spot sam-
pling.

5.3 Frequency spectra of different average-samples

Using, again, 1-min CLF-H source data, 1991.0–2009.0, we
used formulas (42) to (46) to generate a variety of average-
sample types. In Fig. 3a we see that the hourly spot sam-
ples have a spectrumP H

s (f ) that is generally like “continu-
ous variation” that is approximated by 1-min dataP H (f ).
However, at high frequencies, near the Nyquist frequency
(∼ 0.5 cycles/h), the energy of the hourly spot spectrum is
higher than that for the 1-min data. This lifting of the high-
frequency end of the hourly spectrum is entirely due to alias-
ing, S̃s(f ) Eq. (26). In Fig. 3b we show the spectrum of
aliasingP S

s (f ), which can be recognized as the reflection of
the 1-min spectrum through the Nyquist frequency. Because
the 1-min spectrum is “red”, reflection through Nyquist re-
sults in an aliasing spectrum that is “blue”, and for this rea-
son, aliasing is most easily seen in Fig. 3a for frequencies
immediately below Nyquist.

More interesting are the spectra for 1-h average-samples,
Fig. 3c. The spectrumP H

1 (f ) of continuous running
averages is depressed at high frequencies compared to
the 1-min spectrumP H (f ) by an amount equal to the
square of the amplitude-distorting, frequency-response fac-
tor, sinc2(f ;f1) Eq. (7). While the spectrum of discretely-
sampled 1-h average valuesP H

1s(f ) is slightly lower than that
of the 1-min data, it is also slightly higher than the spectrum
for continuous running averages. Again, this difference is
due to aliasing,̃S1s(f ) Eq. (37). In Fig. 3d we show the low-
frequency residual spectrum,P L

1s(f ) Eq. (35), and the alias-
ing spectrum,P S

1s(f ) Eq. (37). Energy in the residual spectra
increases with frequency (“blue”), and the integrated energy
up to the Nyquist frequency is evidently less than that seen
for instantaneous, spot samples Fig. 3b, an observation con-
sistent with observations made of the time series in Fig. 2.
Furthermore, while aliasing accounts for a large portion of
the low-frequency residuals, it does not account for the rela-
tively prominent residual differences seen in periodic diurnal
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Fig. 2. Data from CLF recording 2 days of horizontal-intensity magnetic-field variation during the Halloween storm of October 2003: 1-min
data H(t) (red), running averages Ha(t) (black), signal of discrete samples Has(t) (black), alias Ss(t) (brown), low-frequency residual
Las(t) (blue), and discrete samples (black dots), each for (a) instantaneous, spot samples Hs(tj) and (b) 1-hr average-samples H1s(tj).

creases with frequency (‘blue’), and the integrated energy up
to the Nyquist frequency is evidently less than that seen for
instantaneous, spot samples Fig. 3(b), an observation con-
sistent with observations made of the time series in Fig. 2.
Furthermore, while aliasing accounts for a large portion of
the low-frequency residuals, it does not account for the rel-
atively prominent residual differences seen in periodic diur-
nal terms – those differences are due to amplitude distortion.
Similar conclusions can be drawn from the spectra for Gaus-

sian average-samples Fig. 3(g,h).

For 2-hr running averages, we see in Fig. 3(e) that the
energy in the spectrum PH2 (f) is substantially depressed
for frequencies near Nyquist, and, indeed, the spectrum for
hourly 2-hr average-samples PH2s (f) is also substantially de-
pressed at high frequencies. In Fig. 3(f) we see that alias-
ing spectrum PS2 (f) is lower than that for 1-hr Fig. 3(d) or
Gaussian Fig. 3(h) average-samples, but the residual spec-
trum PL2 (f) is higher. Brick-wall results, PHσ (f) Fig. 3(i,j),

Fig. 2. Data from CLF recording 2 days of horizontal-intensity magnetic-field variation during the Halloween storm of October 2003: 1-min
dataH(t) (red), running averagesHa(t) (black), signal of discrete samplesHas(t) (black), aliasSs(t) (brown), low-frequency residualLas(t)

(blue), and discrete samples (black dots), each for(a) instantaneous, spot samplesHs(tj ) and(b) 1-h average-samplesH1s(tj ).

terms – those differences are due to amplitude distortion.
Similar conclusions can be drawn from the spectra for Gaus-
sian average-samples Fig. 3g, h.

For 2-h running averages, we see in Fig. 3e that the energy
in the spectrumP H

2 (f ) is substantially depressed for fre-
quencies near Nyquist, and, indeed, the spectrum for hourly
2-h average-samplesP H

2s (f ) is also substantially depressed
at high frequencies. In Fig. 3f we see that aliasing spectrum
P S

2 (f ) is lower than that for 1-h Fig. 3d or Gaussian Fig. 3h
average-samples, but the residual spectrumP L

2 (f ) is higher.

Brick-wall results,P H
σ (f ) Fig. 3i, j, are a special case; this

type of average-sample has perfect frequency response below
Nyquist, and therefore no low-frequency residuals at all. The
lesson we can take away from these comparisons is that there
is a trade-off between amplitude distortion and aliasing.

Returning, now, to the power spectra of the historical CLF
data, in Fig. 1b we show the spectra for hourly spot sam-
plesP H

s (f ) and 1-h average-samplesP H
s (f ). In each case,

these have been constructed from 1-min data covering an 18-
year (1991.0–2009.0) period of time that is equal in duration
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Fig. 3. Power spectral density PH(f) as a function of frequency f , for CLF-H 1991.0-2009.0: (a,b) spot samples, (c,d) 1-hr, (e,f) 2-hr, (g,h)
Gaussian, and (i,j) brick-wall average-samples. Shown are spectral densities of the source 1-min data PH(f) (red), running averages PHa (f)
(gray), discrete hourly average-samples PHas(f) (black), low-frequency residuals PLas(f) (blue), and aliasing PSas(f) (brown).

Fig. 3. Power spectral densityPH (f ) as a function of frequencyf , for CLF-H 1991.0–2009.0:(a, b) spot samples,(c, d) 1-h, (e, f) 2-h,
(g, h) Gaussian, and(i, j) brick-wall average-samples. Shown are spectral densities of the source 1-min dataPH (f ) (red), running averages
PH

a (f ) (gray), discrete hourly average-samplesPH
as(f ) (black), low-frequency residualsPL

as(f ) (blue), and aliasingP S
as(f ) (brown).

Ann. Geophys., 28, 2079–2096, 2010 www.ann-geophys.net/28/2079/2010/



J. J. Love et al.: Averaging and sampling for magnetic-observatory hourly data 2089

Table 2. Statistics of discrete 64-min “hourly” average-samples for 1998.0–2009.0.

Lat. Obs. Ave. Abs. Dev.δ Standard Dev.σ

H D Z H D Z

(nT) (′) (nT) (nT) (′) (nT)

High BRW Spot 75.8 14.77 50.6 122.8 26.16 83.7
1-h 69.8 11.82 48.6 107.1 18.87 79.5
2-h 66.3 11.00 46.8 98.1 16.89 75.8

Gauss 69.1 11.66 48.3 105.7 18.52 79.0
Brick 71.9 12.23 49.5 110.6 19.42 81.1

Medium CLF Spot 14.5 2.32 7.8 21.6 3.23 11.8
1-h 14.1 2.24 7.8 20.9 3.10 11.7
2-h 13.8 2.17 7.7 20.4 2.97 11.4

Gauss 14.1 2.23 7.8 20.8 3.08 11.6
Brick 14.3 2.28 7.8 21.1 3.14 11.7

Low HUA Spot 43.4 8.94 6.3 58.6 16.90 8.6
1-h 42.9 8.87 6.2 57.5 16.81 8.5
2-h 42.1 8.78 6.1 56.1 16.68 8.2

Gauss 42.8 8.86 6.2 57.3 16.79 8.4
Brick 43.2 8.91 6.3 57.9 16.86 8.6

to the two periods of time shown in Fig. 1a for the histori-
cal data (spot samples 1954.0–1972.0, 1-h average-samples
1972.0–1990.0). From the considerable similarity between
the spectra seen in Figs. 1a, b and 3a, b, we conclude that
the spectral differences in the historical CLF, seen in Fig. 1a,
are almost entirely due to different averaging and sampling
methods.

5.4 Statistical moments of the average-samples

As a statistical summary of magnetic-field variability
recorded by the various hourly average-sample types, we cal-
culate average-absolute deviations

δB
=

1

NB

∑
j

|B(tj )|, (49)

and standard deviations

σB
=

[
1

NB

∑
j

|B(tj )|
2

] 1
2

, (50)

each defined here for zero-mean data; recall from Sect.4 that
we have subtracted a slowly-varying trendline. By Parseval’s
theorem, the variance of the time series equals the total power
integrated over all frequencies,

1

NB

∑
j

|B(tj )|
2
=

∑
k

P B(fk) (51)

(Lee, 1960, p. 11;Bracewell, 1978, p. 112). Therefore, re-
sults for statistical variance, Eq. (50), can be interpreted in
terms of the integral of the spectral power in the frequency-
domain, Eq. (48).

In Table 2 we list statistical moments for horizontal in-
tensityH , declinationD and vertical intensityZ, from high
(BRW), medium (CLF), and low-latitude (HUA) observa-
tories. Hourly spot measurements are an unbiased repre-
sentation, in a statistical sense, of the amplitude range of
magnetic-field variation. It is, therefore, useful to compare
the moments of spot-sample measurements with those of the
other average-samples types. Without exception, brick-wall
(2-h) average-samples haveδ andσ values closest to (fur-
thest from) those of spot samples. Still, it is noteworthy that
results for 1-h average-samples are relatively similar to those
of both the Gaussian and brick-wall average-samples.

5.5 Low-frequency residual moments

In Table 3 we list the statistical moments of the low-
frequency residuals,Las(t) Eq. (35). Generally speaking,
the smaller the size of this residual, the better the represen-
tation of continuous magnetic-field variation for frequencies
below Nyquist. Low-frequency residuals for spot samples
are the largest, something that is, once again, entirely due to
aliasing. Those for 2-h average-samples are the next largest,
something that is primarily due to amplitude distortion. For
1-h and Gaussian average-samples, low-frequency residual
differences are of similar size. There are no residuals for the
brick-wall average-samples. For all average-sample types,
even spot samples, theZ average absolute and standard de-
viations for medium latitudes (CLF) and low latitudes (HUA)
are less than or equal to the 1.0 nT resolution used in histori-
cal observatory yearbooks.
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Table 3. Statistics of low-frequency residualsLas(t) for 1998.0–2009.0.

Lat. Obs. Ave. Abs. Dev.δ Standard Dev.σ

H D Z H D Z

(nT) (′) (nT) (nT) (′) (nT)

High BRW Spot 29.2 8.71 11.2 53.7 17.38 20.7
1-h 11.4 2.65 5.0 17.7 4.24 7.8
2-h 18.8 3.82 9.2 31.6 6.36 14.9

Gauss 11.3 2.51 5.2 17.7 3.94 8.0
Brick 0.0 0.00 0.0 0.0 0.00 0.0

Medium CLF Spot 2.1 0.39 0.4 4.2 0.75 1.0
1-h 1.0 0.17 0.2 1.6 0.28 0.4
2-h 1.8 0.31 0.6 3.0 0.50 0.9

Gauss 1.0 0.17 0.3 1.6 0.28 0.4
Brick 0.0 0.00 0.0 0.0 0.00 0.0

Low HUA Spot 4.3 0.55 0.6 8.7 1.31 0.9
1-h 1.9 0.25 0.3 3.1 0.50 0.4
2-h 3.4 0.50 0.7 5.5 0.97 0.9

Gauss 1.9 0.26 0.3 3.0 0.52 0.4
Brick 0.0 0.00 0.0 0.0 0.00 0.0

Table 4. Statistics of discrete 685×64-min “monthly” differencesε?m(tj ) for 1998.0–2009.0.

Lat. Obs. Ave. Abs. Dev.δ Standard Dev.σ

H D Z H D Z

(nT) (′) (nT) (nT) (′) (nT)

High BRW Spot 1.6 0.55 0.6 2.0 0.73 0.8
1-h 0.0 0.00 0.0 0.0 0.00 0.0
2-h 0.0 0.01 0.0 0.1 0.02 0.1

Gauss 0.1 0.04 0.1 0.1 0.05 0.1
Brick 0.0 0.01 0.0 0.0 0.01 0.0

Medium CLF Spot 0.1 0.02 0.0 0.1 0.02 0.0
1-h 0.0 0.00 0.0 0.0 0.00 0.0
2-h 0.0 0.00 0.0 0.0 0.00 0.0

Gauss 0.0 0.00 0.0 0.0 0.00 0.0
Brick 0.0 0.00 0.0 0.0 0.00 0.0

Low HUA Spot 0.2 0.03 0.0 0.3 0.05 0.0
1-h 0.0 0.00 0.0 0.0 0.00 0.0
2-h 0.0 0.01 0.0 0.1 0.00 0.0

Gauss 0.0 0.01 0.0 0.0 0.02 0.0
Brick 0.0 0.01 0.0 0.0 0.01 0.0

5.6 Monthly and annual means

Monthly and annual observatory means are used for secular
variation studies, and so it is useful to evaluate the effects of
using different types of hourly average-samples in their con-
struction. For simplicity, we define “monthly” means as the
average of geomagnetic-vector components overtm = 685
“hours”, each being 64 min in length,

B?m(tj ) =
1

tm

h=+342∑
h=−342

B?(tj+h), (52)

with ? denoting any chosen hourly average-sample type from
Eq. (42) to Eq. (46). The difference between a monthly mean
of hourly average-samples and a monthly mean of 1-min data
is

ε?m(tj ) = B?m(tj )−B1sm(tj ). (53)
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Table 4. Statistics of discrete 685×64-minute ‘monthly’ differences ε∗m(tj) for 1998.0-2009.0.

Lat. Obs. Ave. Abs. Dev. δ Standard Dev. σ

H D Z H D Z

(nT) (′) (nT) (nT) (′) (nT)

High BRW Spot 1.6 0.55 0.6 2.0 0.73 0.8
1-hr 0.0 0.00 0.0 0.0 0.00 0.0
2-hr 0.0 0.01 0.0 0.1 0.02 0.1

Gauss 0.1 0.04 0.1 0.1 0.05 0.1
Brick 0.0 0.01 0.0 0.0 0.01 0.0

Medium CLF Spot 0.1 0.02 0.0 0.1 0.02 0.0
1-hr 0.0 0.00 0.0 0.0 0.00 0.0
2-hr 0.0 0.00 0.0 0.0 0.00 0.0

Gauss 0.0 0.00 0.0 0.0 0.00 0.0
Brick 0.0 0.00 0.0 0.0 0.00 0.0

Low HUA Spot 0.2 0.03 0.0 0.3 0.05 0.0
1-hr 0.0 0.00 0.0 0.0 0.00 0.0
2-hr 0.0 0.01 0.0 0.1 0.00 0.0

Gauss 0.0 0.01 0.0 0.0 0.02 0.0
Brick 0.0 0.01 0.0 0.0 0.01 0.0

Fig. 4. Trade-off diagram, for CLF-H 1998.0-2009.0, showing
variance of amplitude distortion Aσs(t) (green), aliasing Sσs(t)
(brown), and low-frequency residuals Lσs(f) (blue) for Gaussian
average-samples over a range of averaging times tσ .

variance of amplitude distortion Aσs(t) and aliasing Sσs(t),
as function of tσ . Amplitude distortion (aliasing) increases
(decreases) with increasing tσ , but there is an inflection point
at tσ = 55 min where the residuals are minimized. This

method of selecting an optimal averaging width is a simple
example of what is sometimes called ‘filter design’.

It is tempting to try to relate the optimized Gaussian filter
to a boxcar average of a certain averaging width. While we
hesitate to read too much into such comparisons, we have al-
ready observed from Table 3 that some of the properties of 1-
hr average-samples are similar to those of the optimum Gaus-
sian filter. The small statistical differences between these two
average-sample types are probably not very significant for
most uses of observatory hourly values. Of course, the re-
deeming quality of 1-hr average-samples is that they are easy
to calculate, even easier than Gaussian average-samples.

5.8 Autocorrelation and avoiding the Gibbs effect

While it is a standard practice to use power spectra to check
for periodic signals and to display Fourier amplitudes in the
frequency domain, in the time domain the corresponding
quantity is autocorrelation. For a real function, such as an
observatory magnetic-field time series, autocorrelation is de-
fined by the integral

CB(τ) = lim
Φ→∞

1
Φ

∫ +Φ/2

−Φ/2

B(φ)B(φ+ τ)dφ, (54)

(Press et al., 1992, ‘correl’), where τ represents a relative
time lag. By the Wiener-Khinchine or ‘auto-correlation’ the-
orem (Lee, 1960, p. 11; Bracewell, 1978, p. 115), an auto-

Fig. 4. Trade-off diagram, for CLF-H 1998.0–2009.0, showing
variance of amplitude distortionAσs(t) (green), aliasingSσs(t)

(brown), and low-frequency residualsLσs(f ) (blue) for Gaussian
average-samples over a range of averaging timestσ .

In Table 4 we list the statistical moments ofε?m(t). For low
and medium latitudes, average differences are less than the
1.0 nT resolution in the monthly-mean database ofChulliat
and Telali (2007). As might be expected, differences are
largest for spot samples from high-latitude observatories, but
even these differences are small compared to the 5.0 nT stan-
dard for absolute accuracy established by Intermagnet for
modern 1-min data. Corresponding differences for annual
means will be even smaller, by about a factor of 1/

√
12.

The slightly larger average differences for Gaussian average-
samples are mostly due to end-point differences, with the
tails of each hourly Gaussian filter extending outside of each
monthly boxcar averaging window. In analyzing secular
variation, it is probably acceptable to use any type of hourly
average-sample to construct monthly and annual means.

5.7 Optimum Gaussian filter

Our choice of a Gaussian filter withtσ = 55 min minimizes
the variance of the low-frequency residuals,Lσs(f ) Eqs. (35)
and (50). In Fig. 4 we show this quantity, along with the vari-
ance of amplitude distortionAσs(t) and aliasingSσs(t), as
function oftσ . Amplitude distortion (aliasing) increases (de-
creases) with increasingtσ , but there is an inflection point at
tσ = 55 min where the residuals are minimized. This method
of selecting an optimal averaging width is a simple example
of what is sometimes called “filter design”.

It is tempting to try to relate the optimized Gaussian fil-
ter to a boxcar average of a certain averaging width. While
we hesitate to read too much into such comparisons, we have
already observed from Table 3 that some of the properties

of 1-h average-samples are similar to those of the optimum
Gaussian filter. The small statistical differences between
these two average-sample types are probably not very signif-
icant for most uses of observatory hourly values. Of course,
the redeeming quality of 1-h average-samples is that they are
easy to calculate, even easier than Gaussian average-samples.

5.8 Autocorrelation and avoiding the Gibbs effect

While it is a standard practice to use power spectra to check
for periodic signals and to display Fourier amplitudes in the
frequency domain, in the time domain the corresponding
quantity is autocorrelation. For a real function, such as an
observatory magnetic-field time series, autocorrelation is de-
fined by the integral

CB(τ ) = lim
8→∞

1

8

∫
+8/2

−8/2
B(φ)B(φ+τ)dφ, (54)

(Press et al., 1992, “correl”), whereτ represents a relative
time lag. By the Wiener-Khinchine or “auto-correlation” the-
orem (Lee, 1960, p. 11;Bracewell, 1978, p. 115), an autocor-
relation is related to a power spectrum by Fourier transforma-
tion,

F
{
CB(τ )

}
= P B(f ). (55)

Despite this duality, some properties of a time series are more
easily seen in power spectra, while others are more easily
seen in autocorrelation.

In Fig. 5 we show autocorrelations for the source 1-
min dataCH (τ ), continuous running averagesCH

a (τ ), and
average-samplesCH

as(τ ) for CLF-H 1991.0–2009.0. Promi-
nent solar-quiet diurnal peaks are seen with time lags of
1d, 2d, etc.; these correspond to the diurnal peaks in fre-
quency of 1/d seen in the power spectra of Fig. 3. For very
short time lags, less than the averaging duration, autocorrela-
tions CH

a (τ ) are flat. These results are all to be expected.
What is perhaps more interesting are the autocorrelations
for low-frequency residuals,CL

a (τ ) Eq. (35). For spot sam-
pling, residuals are entirely due to aliasing, and since alias-
ing residuals tend to be larger than those for other average-
sample types, the autocorrelation of spot-sampling residuals
has a larger zero-time-lag base value. For all average-sample
types, other than the brick-wall, there is significant Gibbs-
effect ringing out to time lags of several hours. Close inspec-
tion of Fig. 5 shows that the zero crossings ofCL

a (τ ) occur,
very nearly, at integer hours (64-min hours). This is consis-
tent with the observation we made in Sect.5.2 that hourly
average-samples avoid most Gibbs ringing by straddling the
zero crossings of the sinc function.

5.9 Correlation and proportionality of average-samples

As we have remarked, brick-wall average-samples have no
low-frequency residuals, while the other average-sample
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Fig. 5. Autocorrelation CH(τ) as a function of time lag τ , for CLF-H 1991.0-2009.0: (a,b) spot (c,d) 1-hr, (e,f) 2-hr, (g,h) Gaussian, and
(i,j) brick-wall average-samples. Shown are autocorrelation of the source 1-min data CH(τ) (red), running averages CHa (τ) (gray), discrete
hourly average-samples CHas(τj) (black), low-frequency residuals CLa (τ) (blue), and aliasing CSs (τ) (brown).

Fig. 5. AutocorrelationCH (τ ) as a function of time lagτ , for CLF-H 1991.0–2009.0:(a, b) spot(c, d) 1-h, (e, f) 2-h, (g, h) Gaussian, and
(i, j) brick-wall average-samples. Shown are autocorrelation of the source 1-min dataCH (τ ) (red), running averagesCH

a (τ ) (gray), discrete
hourly average-samplesCH

as(τj ) (black), low-frequency residualsCL
a (τ ) (blue), and aliasingCS

s (τ ) (brown).
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Fig. 6. Scatter plots of discrete 1-hr H1s(tj) versus brick-wall average-samples Hbs(tj) for (a) high latitude (BRW), (b) medium latitude
(CLF), and (c) low latitude (HUA). Also given, for each case, are correlation coefficients ρ and proportionalities α (shown as a fitted line).
Data used are for 1998.0-2009.0, and densities are for 100.0, 10.0, 1.0, and 0.1% of the data.

correlation is related to a power spectrum by Fourier trans-
formation,

F
{
CB(τ)

}
= PB(f). (55)

Despite this duality, some properties of a time series are more
easily seen in power spectra, while others are more easily
seen in autocorrelation.

In Fig. 5 we show autocorrelations for the source 1-
min data CH(τ), continuous running averages CHa (τ), and
average-samples CHas(τ) for CLF-H 1991.0-2009.0. Promi-
nent solar-quiet diurnal peaks are seen with time lags of
1d, 2d, etc.; these correspond to the diurnal peaks in fre-
quency of 1/d seen in the power spectra of Fig. 3. For very
short time lags, less than the averaging duration, autocorrela-
tions CHa (τ) are flat. These results are all to be expected.
What is perhaps more interesting are the autocorrelations
for low-frequency residuals, CLa (τ) Eq. (35). For spot sam-
pling, residuals are entirely due to aliasing, and since alias-
ing residuals tend to be larger than those for other average-
sample types, the autocorrelation of spot-sampling residuals
has a larger zero-time-lag base value. For all average-sample
types, other than the brick-wall, there is significant Gibbs-
effect ringing out to time lags of several hours. Close inspec-
tion of Fig. 5 shows that the zero crossings of CLa (τ) occur,
very nearly, at integer hours (64-min hours). This is con-
sistent with the observation we made in Sec. 5.2 that hourly
average-samples avoid most Gibbs ringing by straddling the
zero crossings of the sinc function.

5.9 Correlation and proportionality of average-samples

As we have remarked, brick-wall average-samples have no
low-frequency residuals, while the other average-sample
types have some combination of amplitude distortion and

aliasing. It is useful, therefore, to compare linear correlations
ρ between brick-wall and other average-sample types,

ρ =
1
NB

∑
j

Bas(tj)Bbs(tj)
σBasσ

B
bs

, (56)

(Press et al., 1992, ‘pearsn’), defined here for zero-mean
data; recall from Sec. 4 that we have subtracted a slowly-
varying trendline. A correlation close to unity means that
the relative amplitude, phase, and frequency of continuous
magnetic-field variation below Nyquist are being accurately
recorded. In Fig. 6 we show scatter plots for brick-wall and
1-hr average-samples. In Table 5 we list correlations for each
magnetic-field component and for each observatory. In gen-
eral, spot and 2-hr average-samples have the lowest correla-
tions with brick-wall average-samples, while 1-hr and Gaus-
sian average-samples are very highly correlated with brick-
wall average-samples.

Since spot measurements are a statistically unbiased sam-
pling of the amplitude range of magnetic-field variation, it
is useful to compare their proportionalites α with the other
average-samples,

Bas(tj) ' αBs(tj), (57)

where each α are estimated with a least-squares algorithm
(Press et al., 1992, ‘fitexy’). A proportionality close to unity
means that the average-sample type is accurately record-
ing the absolute amplitude range of magnetic-field varia-
tion. In Fig. 7 we show scatter plots for spot and 1-hr
average-samples. In Table 5 we list proportionalities for each
magnetic-field component and for each observatory. Without
exception, brick-wall (2-hr) average-samples are the most
(least) directly proportional to spot samples. Results for 1-hr
average-samples are relatively similar to those of both Gaus-
sian and brick-wall average-samples.

Fig. 6. Scatter plots of discrete 1-hH1s(tj ) versus brick-wall average-samplesHbs(tj ) for (a) high latitude (BRW),(b) medium latitude
(CLF), and(c) low latitude (HUA). Also given, for each case, are correlation coefficientsρ and proportionalitiesα (shown as a fitted line).
Data used are for 1998.0-2009.0, and densities are for 100.0, 10.0, 1.0, and 0.1% of the data.

16 LOVE et al.: AVERAGING AND SAMPLING FOR MAGNETIC-OBSERVATORY HOURLY DATA

Fig. 7. Scatter plots of discrete 1-hr average-samples H1s(tj) versus spot samples Hs(tj) for (a) high latitude (BRW), (b) medium latitude
(CLF), and (c) low latitude (HUA). Also given, for each case, are correlation coefficients ρ and proportionalities α (shown as a fitted line).
Data used are for 1998.0-2009.0, and densities are for 100.0, 10.0, 1.0, and 0.1% of the data.

Table 5. Correlations with brick-wall average samples and proportionalities with spot samples, 1998.0-2009.0.

Lat. Obs. Corr.with brick ρ Prop. with spot α

H D Z H D Z

High BRW Spot 0.9001 0.7475 0.9690 1.0000 1.0000 1.0000
1-hr 0.9874 0.9759 0.9955 0.8617 0.6565 0.9485
2-hr 0.9615 0.9480 0.9841 0.7687 0.5393 0.9013

Gauss 0.9878 0.9795 0.9954 0.8597 0.6496 0.9419
Brick 1.0000 1.0000 1.0000 0.8902 0.6745 0.9685

Medium CLF Spot 0.9818 0.9728 0.9963 1.0000 1.0000 1.0000
1-hr 0.9973 0.9962 0.9994 0.9677 0.9573 0.9862
2-hr 0.9906 0.9881 0.9972 0.9427 0.9142 0.9669

Gauss 0.9973 0.9962 0.9994 0.9649 0.9514 0.9837
Brick 1.0000 1.0000 1.0000 0.9773 0.9713 0.9936

Low HUA Spot 0.9891 0.9989 0.9944 1.0000 1.0000 1.0000
1-hr 0.9986 0.9998 0.9989 0.9808 0.9946 0.9837
2-hr 0.9959 0.9994 0.9948 0.9578 0.9873 0.9563

Gauss 0.9987 0.9998 0.9988 0.9775 0.9935 0.9799
Brick 1.0000 1.0000 1.0000 0.9888 0.9975 0.9947

5.10 ESK hourly values at the WDCs

In Sec. 2 we mentioned that the pre-1932.0 hourly WDC-
CE ESK data are 2-hr average-samples, with each datum
formed by averaging two adjacent 1-hr average-samples
from the original observatory yearbooks. In Fig. 8 we show
frequency-domain power spectra of historical ESK-H data
obtained from WDC-CE, separately for the years 1917.0-
1932.0 and 1932.0-1947.0. As a result of 2-hr averaging,
the frequency content of the data for 1917.0-1932.0 has been

dramatically altered. Since many researchers assume that
data obtained from a WDC are those that the observatories
originally reported, it would be desirable to return the WDC-
CE holdings of the ESK data to their original form, possibly
by using the digital data held at Kyoto. Otherwise, it would
be useful for the data to be flagged as having been changed.

Note added after journal review: We are happy to have
learned that the pre-1932.0 hourly WDC-CE ESK data have
been restored to their original yearbook values (S. Macmil-
lan, personal communication, 2010).

Fig. 7. Scatter plots of discrete 1-h average-samplesH1s(tj ) versus spot samplesHs(tj ) for (a) high latitude (BRW),(b) medium latitude
(CLF), and(c) low latitude (HUA). Also given, for each case, are correlation coefficientsρ and proportionalitiesα (shown as a fitted line).
Data used are for 1998.0–2009.0, and densities are for 100.0, 10.0, 1.0, and 0.1% of the data.

types have some combination of amplitude distortion and
aliasing. It is useful, therefore, to compare linear correlations
ρ between brick-wall and other average-sample types,

ρ =
1

NB

∑
j

Bas(tj )Bbs(tj )

σB
asσ

B
bs

, (56)

(Press et al., 1992, “pearsn”), defined here for zero-mean
data; recall from Sect.4 that we have subtracted a slowly-
varying trendline. A correlation close to unity means that
the relative amplitude, phase, and frequency of continuous
magnetic-field variation below Nyquist are being accurately
recorded. In Fig. 6 we show scatter plots for brick-wall and
1-h average-samples. In Table 5 we list correlations for each
magnetic-field component and for each observatory. In gen-
eral, spot and 2-h average-samples have the lowest correla-

tions with brick-wall average-samples, while 1-h and Gaus-
sian average-samples are very highly correlated with brick-
wall average-samples.

Since spot measurements are a statistically unbiased sam-
pling of the amplitude range of magnetic-field variation, it
is useful to compare their proportionalitesα with the other
average-samples,

Bas(tj ) ' αBs(tj ), (57)

where eachα are estimated with a least-squares algorithm
(Press et al., 1992, “fitexy”). A proportionality close to unity
means that the average-sample type is accurately record-
ing the absolute amplitude range of magnetic-field varia-
tion. In Fig. 7 we show scatter plots for spot and 1-h
average-samples. In Table 5 we list proportionalities for each
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Table 5. Correlations with brick-wall average samples and proportionalities with spot samples, 1998.0–2009.0.

Lat. Obs. Corr. with brickρ Prop. with spotα

H D Z H D Z

High BRW Spot 0.9001 0.7475 0.9690 1.0000 1.0000 1.0000
1-h 0.9874 0.9759 0.9955 0.8617 0.6565 0.9485
2-h 0.9615 0.9480 0.9841 0.7687 0.5393 0.9013

Gauss 0.9878 0.9795 0.9954 0.8597 0.6496 0.9419
Brick 1.0000 1.0000 1.0000 0.8902 0.6745 0.9685

Medium CLF Spot 0.9818 0.9728 0.9963 1.0000 1.0000 1.0000
1-h 0.9973 0.9962 0.9994 0.9677 0.9573 0.9862
2-h 0.9906 0.9881 0.9972 0.9427 0.9142 0.9669

Gauss 0.9973 0.9962 0.9994 0.9649 0.9514 0.9837
Brick 1.0000 1.0000 1.0000 0.9773 0.9713 0.9936

Low HUA Spot 0.9891 0.9989 0.9944 1.0000 1.0000 1.0000
1-h 0.9986 0.9998 0.9989 0.9808 0.9946 0.9837
2-h 0.9959 0.9994 0.9948 0.9578 0.9873 0.9563

Gauss 0.9987 0.9998 0.9988 0.9775 0.9935 0.9799
Brick 1.0000 1.0000 1.0000 0.9888 0.9975 0.9947
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Fig. 8. Comparison of power spectral density PH(f) as a func-
tion of frequency f for historical hourly ESK-H data obtained from
WDC-CE, 1917.0-1932.0 (black) and 1932.0-1947.0 (red).

6 Conclusions

In analyses complementary to this one (e.g. Love, 2009;
Marsal and Curto, 2009), the accuracy of hourly average-
samples constructed from digital 1-min data having miss-
ing values has been investigated, and corresponding errors
were estimated. Here we have considered a more funda-
mental issue, the effects of averaging and sampling in the
construction of observatory hourly values. Of the average-
sample types most commonly used, spot samples are a
statistically-unbiased representation of the amplitude range
of geomagnetic-field variation, but as a representation of con-
tinuous variation over time, spot values are heavily contam-
inated by aliasing. On the other hand, 1-hr average-samples
are a statistically-biased representation of geomagnetic-field
values, but as a representation of continuous variation be-
low Nyquist, 1-hr average-samples from medium and low-
latitude observatories are only slightly contaminated by am-
plitude distortion and aliasing – their average low-frequency
residuals are less than the 5.0 nT absolute accuracy level es-
tablished by Intermagnet as a modern operational standard
for observatories. High-latitude 1-hr average-samples have
more amplitude distortion and aliasing, but the natural mag-
netic ‘signal’ is also larger at high latitudes. 1-hr average-
samples constructed using an optimal Gaussian filter are not
significantly more accurate than simple 1-hr average values.
Therefore, we recommend the continuation of the standard
practice by observatories and World Data Centers for report-
ing simple 1-hr-average hourly values. Of course, this does
not preclude the production of other data-based products, in-
cluding other types of hourly values, but maintaining conti-
nuity with the historical 1-hr-average time series should be
recognized as an important priority.
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Fig. 8. Comparison of power spectral densityPH (f ) as a func-
tion of frequencyf for historical hourly ESK-H data obtained from
WDC-CE, 1917.0–1932.0 (black) and 1932.0–1947.0 (red).

magnetic-field component and for each observatory. With-
out exception, brick-wall (2-h) average-samples are the most
(least) directly proportional to spot samples. Results for 1-h
average-samples are relatively similar to those of both Gaus-
sian and brick-wall average-samples.

5.10 ESK hourly values at the WDCs

In Sect. 2 we mentioned that the pre-1932.0 hourly WDC-
CE ESK data are 2-h average-samples, with each datum
formed by averaging two adjacent 1-h average-samples from

the original observatory yearbooks. In Fig. 8 we show
frequency-domain power spectra of historical ESK-H data
obtained from WDC-CE, separately for the years 1917.0–
1932.0 and 1932.0–1947.0. As a result of 2-h averaging, the
frequency content of the data for 1917.0–1932.0 has been
dramatically altered. Since many researchers assume that
data obtained from a WDC are those that the observatories
originally reported, it would be desirable to return the WDC-
CE holdings of the ESK data to their original form, possibly
by using the digital data held at Kyoto. Otherwise, it would
be useful for the data to be flagged as having been changed.

Note added after journal review: we are happy to have
learned that the pre-1932.0 hourly WDC-CE ESK data have
been restored to their original yearbook values (S. Macmil-
lan, personal communication, 2010).

6 Conclusions

In analyses complementary to this one (e.g.Love, 2009;
Marsal and Curto, 2009), the accuracy of hourly average-
samples constructed from digital 1-min data having miss-
ing values has been investigated, and corresponding errors
were estimated. Here we have considered a more funda-
mental issue, the effects of averaging and sampling in the
construction of observatory hourly values. Of the average-
sample types most commonly used, spot samples are a
statistically-unbiased representation of the amplitude range
of geomagnetic-field variation, but as a representation of con-
tinuous variation over time, spot values are heavily contam-
inated by aliasing. On the other hand, 1-h average-samples
are a statistically-biased representation of geomagnetic-field
values, but as a representation of continuous variation below
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Nyquist, 1-h average-samples from medium and low-latitude
observatories are only slightly contaminated by amplitude
distortion and aliasing – their average low-frequency resid-
uals are less than the 5.0 nT absolute accuracy level estab-
lished by Intermagnet as a modern operational standard for
observatories. High-latitude 1-h average-samples have more
amplitude distortion and aliasing, but the natural magnetic
“signal” is also larger at high latitudes. 1-h average-samples
constructed using an optimal Gaussian filter are not signifi-
cantly more accurate than simple 1-h average values. There-
fore, we recommend the continuation of the standard practice
by observatories and World Data Centers for reporting sim-
ple 1-h-average hourly values. Of course, this does not pre-
clude the production of other data-based products, including
other types of hourly values, but maintaining continuity with
the historical 1-h-average time series should be recognized
as an important priority.
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