1,786 research outputs found

    The Problem of Adhesion Methods and Locomotion Mechanism Development for Wall-Climbing Robots

    Full text link
    This review considers a problem in the development of mobile robot adhesion methods with vertical surfaces and the appropriate locomotion mechanism design. The evolution of adhesion methods for wall-climbing robots (based on friction, magnetic forces, air pressure, electrostatic adhesion, molecular forces, rheological properties of fluids and their combinations) and their locomotion principles (wheeled, tracked, walking, sliding framed and hybrid) is studied. Wall-climbing robots are classified according to the applications, adhesion methods and locomotion mechanisms. The advantages and disadvantages of various adhesion methods and locomotion mechanisms are analyzed in terms of mobility, noiselessness, autonomy and energy efficiency. Focus is placed on the physical and technical aspects of the adhesion methods and the possibility of combining adhesion and locomotion methods

    Giant Magnetoresistance Oscillations Induced by Microwave Radiation and a Zero-Resistance State in a 2D Electron System with a Moderate Mobility

    Full text link
    The effect of a microwave field in the frequency range from 54 to 140 GHz\mathrm{GHz} on the magnetotransport in a GaAs quantum well with AlAs/GaAs superlattice barriers and with an electron mobility no higher than 10610^6 cm2/Vs\mathrm{cm^2/Vs} is investigated. In the given two-dimensional system under the effect of microwave radiation, giant resistance oscillations are observed with their positions in magnetic field being determined by the ratio of the radiation frequency to the cyclotron frequency. Earlier, such oscillations had only been observed in GaAs/AlGaAs heterostructures with much higher mobilities. When the samples under study are irradiated with a 140-GHz\mathrm{GHz} microwave field, the resistance corresponding to the main oscillation minimum, which occurs near the cyclotron resonance, appears to be close to zero. The results of the study suggest that a mobility value lower than 10610^6 cm2/Vs\mathrm{cm^2/Vs} does not prevent the formation of zero-resistance states in magnetic field in a two-dimensional system under the effect of microwave radiation.Comment: 4 pages, 2 figur

    Anisotropic positive magnetoresistance of a nonplanar 2D electron gas in a parallel magnetic field

    Full text link
    We study the transport properties of a 2D electron gas in narrow GaAs quantum wells with AlAs/GaAs superlattice barriers. It is shown that the anisotropic positive magnetoresistance observed in selectively doped semiconductor structures in a parallel magnetic field is caused by the spatial modulation of the 2D electron gas.Comment: 4 pages, 3 figure

    Joint characteristic timescales and entropy production analyses for model reduction of combustion systems

    Get PDF
    The reduction of chemical kinetics describing combustion processes remains one of the major topics in the combustion theory and its applications. Problems concerning the estimation of reaction mechanisms real dimension remain unsolved, this being a critical point in the development of reduction models. In this study, we suggest a combination of local timescale and entropy production analyses to cope with this problem. In particular, the framework of skeletal mechanism is in the focus of the study as a practical and most straightforward implementation strategy for reduced mechanisms. Hydrogen and methane/dimethyl ether reaction mechanisms are considered for illustration and validation purposes. Two skeletal mechanism versions were obtained for methane/dimethyl ether combustion system by varying the tolerance used to identify important reactions in the characteristic timescale analysis of the system. Comparisons of ignition delay times and species profiles calculated with the detailed and the reduced models are presented. The results of the application show transparently the potential of the suggested approach to be automatically implemented for the reduction of large chemical kinetic models

    The study of sorption of caesium radionuclides by "t-55" ferrocyanide sorbent from various types of liquid radioactive wastes

    Full text link
    The sorption of caesium by T-55 sorbent from different types of liquid radioactive wastes is studied. It is shown that the sorbent can be used for extraction of caesium from high level acidic and saline solutions and also for decontamination of caesium contaminated waters containing surfactants and EDTA. © 2012 Akadémiai Kiadó, Budapest, Hungary

    Continuation of connecting orbits in 3D-ODEs: (I) Point-to-cycle connections

    Full text link
    We propose new methods for the numerical continuation of point-to-cycle connecting orbits in 3-dimensional autonomous ODE's using projection boundary conditions. In our approach, the projection boundary conditions near the cycle are formulated using an eigenfunction of the associated adjoint variational equation, avoiding costly and numerically unstable computations of the monodromy matrix. The equations for the eigenfunction are included in the defining boundary-value problem, allowing a straightforward implementation in AUTO, in which only the standard features of the software are employed. Homotopy methods to find connecting orbits are discussed in general and illustrated with several examples, including the Lorenz equations. Complete AUTO demos, which can be easily adapted to any autonomous 3-dimensional ODE system, are freely available.Comment: 18 pages, 10 figure

    On surface plasmon polariton wavepacket dynamics in metal-dielectric heterostructures

    Full text link
    The WKB equations for dynamics of the surface plasmon polariton (SPP) wavepacket are studied. The dispersion law for the SPP in the metal-dielectric heterostructure with varying thickness of a perforated dielectric layer is rigorously calculated and investigated using the scattering matrix method. Two channels of the SPP wavepacket optical losses related to the absorption in a metal and to the SPP leakage are analyzed. It is shown that change of the dielectric layer thickness acts on the SPP as an external force leading to evolution of its quasimomentum and to the wavepacket reversal or even to the optical Bloch oscillations (BO). Properties of these phenomena are investigated and discussed. Typical values of the BO amplitude are about tens of microns and the period is around tens or hundreds of femtoseconds.Comment: 12 pages, 5 figure

    Coherent radiation from neutral molecules moving above a grating

    Get PDF
    We predict and study the quantum-electrodynamical effect of parametric self-induced excitation of a molecule moving above the dielectric or conducting medium with periodic grating. In this case the radiation reaction force modulates the molecular transition frequency which results in a parametric instability of dipole oscillations even from the level of quantum or thermal fluctuations. The present mechanism of instability of electrically neutral molecules is different from that of the well-known Smith-Purcell and transition radiation in which a moving charge and its oscillating image create an oscillating dipole. We show that parametrically excited molecular bunches can produce an easily detectable coherent radiation flux of up to a microwatt.Comment: 4 page

    Electron spin resonance investigation of Mn^{2+} ions and their dynamics in manganese doped SrTiO_3

    Full text link
    Using electron spin resonance, lattice position and dynamic properties of Mn2+ ions were studied in 0.5 and 2 % manganese doped SrTiO3 ceramics prepared by conventional mixed oxide method. The measurements showed that Mn2+ ions substitute preferably up to 97 % for Sr if the ceramics is prepared with a deficit of Sr ions. Motional narrowing of the Mn2+ ESR spectrum was observed when temperature increases from 120 K to 240-250 K that was explained as a manifestation of off-center position of this ion at the Sr site. From the analysis of the ESR spectra the activation energy Ea = 86 mV and frequency factor 1/?0 ? (2-10)x10^(-14) 1/s for jumping of the impurity between symmetrical off-center positions were determined. Both values are in agreement with those derived previously from dielectric relaxation. This proves the origin of dielectric anomalies in SrTiO3:Mn as those produced by the reorientation dynamics of Mn2+ dipoles.Comment: 16 pages, 6 figure
    corecore