52 research outputs found

    The role of environmental sustainability in the relocation choices of MNEs: Back to the home country or welcome in a new host country?

    Get PDF
    This study investigates how firms' awareness of environmental sustainability affects the revision of their internationalization strategies. Combining Stakeholder and Signalling theories, we argue that firms concerned with environmental sustainability have a higher propensity to return to their home country when confronted with the need to relocate foreign manufacturing subsidiaries, in order to match Corporate Social Responsibility (CSR) stakeholder expectations and enhance the effectiveness of sustainable disclosure endeavours. We also argue that the home country's environmental policy stringency, reflecting a stronger pressure by stakeholders and a higher need for effective signals, positively moderates the relationship between the firm environmental sustainability concern and the likelihood to move back home. The empirical analysis conducted on a sample of 150 relocations performed across European nations in 2002–2016 reveals that MNEs signalling their CSR are more likely to backshore only in case of rigid environmental laws, which are perceived as an opportunity to align with CSR stakeholder expectations and to amplify the benefits of disclosing the shortening of their global value chain

    A comparison of sacral neuromodulation vs. transvaginal electrical stimulation for the treatment of refractory overactive bladder: The impact on quality of life, body image, sexual function, and emotional well-being

    Get PDF
    Overactive bladder syndrome (OAB) is defined by the presence of urinary urgency, with or without urge incontinence, usually accompanied by an increase in urinary frequency and nocturia in the absence of urinary tract infections (UTI) or other diseases. The overall prevalence of OAB symptoms in the female population is reported to be 16.6% and increases with advancing age and menopause. The aetiology of OAB is not fully understood and is likely to affect a heterogeneous population of patients due to changes to their central and peripheral nervous systems. Although OAB is frequently associated with female sexual dysfunction (FSD), its real impact on sexual function in women has been evaluated only in a few studies. The first line of treatment for OAB includes behavioural modification and physical therapy, either as monotherapies or in combination. Many patients who have not had success in managing their symptoms with more conservative therapies may decide to resort to third-line treatments for refractory OAB. These treatments include neuromodulation therapies, particularly transvaginal electrical stimulation (TES) and sacral neuromodulation (SN). The aim of this short commentary is to provide an overview of the effectiveness of these treatments and of their impact on quality of life, body image, sexual function, and emotional well-being

    Phase I trial combining temozolomide plus lapatinib for the treatment of brain metastases in patients with HER2-positive metastatic breast cancer: the LAPTEM trial

    Get PDF
    Background Brain metastases (BMs) pose a clinical challenge in breast cancer (BC). Lapatinib or temozolomide showed activity in BM. Our study assessed the combination of both drugs as treatment for patients with HER2-positive BC and BM. Methods Eighteen patients were enrolled, with sixteen of them having recurrent or progressive BM. Any type of previous therapy was allowed, and disease was assessed by gadolinium (Gd)-enhanced magnetic resonance imaging (MRI). The primary end points were the evaluation of the dose-limiting toxicities (DLTs) and the determination of the maximum-tolerated dose (MTD). The secondary end points included objective response rate, clinical benefit and duration of response. Results The lapatinib-temozolomide regimen showed a favorable toxicity profile because the MTD could not be reached. The most common adverse events (AEs) were fatigue, diarrhea and constipation. Disease stabilization was achieved in 10 out of 15 assessable patients. The estimated median survival time for the 16 patients with BM reached 10.94 months (95% CI: 1.09-20.79), whereas the median progression-free survival time was 2.60 months [95% confidence interval (CI): 1.82-3.37]. Conclusions The lapatinib-temozolomide combination is well tolerated. Preliminary evidence of clinical activity was observed in a heavily pretreated population, as indicated by the volumetric reductions occurring in brain lesion

    Pilot optical alignment

    Get PDF
    PILOT (Polarized Instrument for Long wavelength Observations of the Tenuous interstellar medium) is a balloonborne astronomy experiment designed to study the polarization of dust emission in the diffuse interstellar medium in our Galaxy. The PILOT instrument allows observations at wavelengths 240 μm and 550 μm with an angular resolution of about two arcminutes. The observations performed during the two first flights performed from Timmins, Ontario Canada, and from Alice-springs, Australia, respectively in September 2015 and in April 2017 have demonstrated the good performances of the instrument. Pilot optics is composed of an off axis Gregorian type telescope combined with a refractive re-imager system. All optical elements, except the primary mirror, which is at ambient temperature, are inside a cryostat and cooled down to 3K. The whole optical system is aligned on ground at room temperature using dedicated means and procedures in order to keep the tight requirements on the focus position and ensure the instrument optical performances during the various phases of a flight. We’ll present the optical performances and the firsts results obtained during the two first flight campaigns. The talk describes the system analysis, the alignment methods, and finally the inflight performances

    PILOT: optical performance and end-to-end characterisation

    Get PDF
    PILOT (Polarized Instrument for the Long-wavelength Observations of the Tenuous ISM), is a balloon-borne astronomy experiment dedicated to study the polarization of dust emission from the diffuse ISM in our Galaxy [1]. The observations of PILOT have two major scientific objectives. Firstly, they will allow us to constrain the large-scale geometry of the magnetic field in our Galaxy and to study in details the alignment properties of dust grains with respect to the magnetic field. In this domain, the measurements of PILOT will complement those of the Planck satellite at longer wavelengths. In particular, they will bring information at a better angular resolution, which is critical in crowded regions such as the Galactic plane. They will allow us to better understand how the magnetic field is shaping the ISM material on large scale in molecular clouds, and the role it plays in the gravitational collapse leading to star formation. Secondly, the PILOT observations will allow us to measure for the first time the polarized dust emission towards the most diffuse regions of the sky, where the measurements are the most easily interpreted in terms of the physics of dust. In this particular domain, PILOT will play a role for future CMB missions similar to that played by the Archeops experiment for Planck. The results of PILOT will allow us to gain knowledge about the magnetic properties of dust grains and about the structure of the magnetic field in the diffuse ISM that is necessary to a precise foreground subtraction in future polarized CMB measurements. The PILOT measurements, combined with those of Planck at longer wavelengths, will therefore allow us to further constrain the dust models. The outcome of such studies will likely impact the instrumental and technical choices for the future space missions dedicated to CMB polarization. The PILOT instrument will allow observations in two photometric channels at wavelengths 240 ÎĽm and 550 ÎĽm, with an angular resolution of a few arcminutes. We will make use of large format bolometer arrays, developed for the PACS instrument on board the Herschel satellite. With 1024 detectors per photometric channel and photometric band optimized for the measurement of dust emission, PILOT is likely to become the most sensitive experiment for this type of measurements. The PILOT experiment will take advantage of the large gain in sensitivity allowed by the use of large format, filled bolometer arrays at frequencies more favorable to the detection of dust emission. This paper presents the optical design, optical characterization and its performance. We begin with a presentation of the instrument and the optical system and then we summarise the main optical tests performed. In section III, we present preliminary end-to-end test results

    PILOT: optical performance and end-to-end characterisation

    Get PDF
    PILOT (Polarized Instrument for the Long-wavelength Observations of the Tenuous ISM), is a balloon-borne astronomy experiment dedicated to study the polarization of dust emission from the diffuse ISM in our Galaxy [1]. The observations of PILOT have two major scientific objectives. Firstly, they will allow us to constrain the large-scale geometry of the magnetic field in our Galaxy and to study in details the alignment properties of dust grains with respect to the magnetic field. In this domain, the measurements of PILOT will complement those of the Planck satellite at longer wavelengths. In particular, they will bring information at a better angular resolution, which is critical in crowded regions such as the Galactic plane. They will allow us to better understand how the magnetic field is shaping the ISM material on large scale in molecular clouds, and the role it plays in the gravitational collapse leading to star formation. Secondly, the PILOT observations will allow us to measure for the first time the polarized dust emission towards the most diffuse regions of the sky, where the measurements are the most easily interpreted in terms of the physics of dust. In this particular domain, PILOT will play a role for future CMB missions similar to that played by the Archeops experiment for Planck. The results of PILOT will allow us to gain knowledge about the magnetic properties of dust grains and about the structure of the magnetic field in the diffuse ISM that is necessary to a precise foreground subtraction in future polarized CMB measurements. The PILOT measurements, combined with those of Planck at longer wavelengths, will therefore allow us to further constrain the dust models. The outcome of such studies will likely impact the instrumental and technical choices for the future space missions dedicated to CMB polarization. The PILOT instrument will allow observations in two photometric channels at wavelengths 240 ÎĽm and 550 ÎĽm, with an angular resolution of a few arcminutes. We will make use of large format bolometer arrays, developed for the PACS instrument on board the Herschel satellite. With 1024 detectors per photometric channel and photometric band optimized for the measurement of dust emission, PILOT is likely to become the most sensitive experiment for this type of measurements. The PILOT experiment will take advantage of the large gain in sensitivity allowed by the use of large format, filled bolometer arrays at frequencies more favorable to the detection of dust emission. This paper presents the optical design, optical characterization and its performance. We begin with a presentation of the instrument and the optical system and then we summarise the main optical tests performed. In section III, we present preliminary end-to-end test results

    Pilot optical alignment

    Full text link
    PILOT (Polarized Instrument for Long wavelength Observations of the Tenuous interstellar medium) is a balloonborne astronomy experiment designed to study the polarization of dust emission in the diffuse interstellar medium in our Galaxy. The PILOT instrument allows observations at wavelengths 240 ÎĽm (1.2THz) with an angular resolution about two arc-minutes. The observations performed during the first flight in September 2015 at Timmins, Ontario Canada, have demonstrated the optical performances of the instrument

    Inclusive digital finance: the industry of equity crowdfunding

    Get PDF
    Nowadays equity crowdfunding plays an important role in the entrepreneurial finance markets. To better understand the functioning of the industry, it is important to consider the entire equity crowdfunding process and all the actors involved. Equity crowdfunding platforms match indeed the demand of capital from entrepreneurial ventures with the supply of capital by investors. This manuscript is a first step in this direction, by (1) comparing equity crowdfunding with traditional sources of entrepreneurial finance; (2) discussing the potential and the perils of equity crowdfunding for inclusivity and democratization; (3) highlighting the role of visual information in digital finance; and (4) providing first insights on the industrial dynamics in equity crowdfunding. The paper gives researchers and practitioners orientation about recent developments in equity crowdfunding literature and provides relevant research directions

    On the organizational design of entrepreneurial ventures: the configurations of the entrepreneurial team

    No full text
    Several studies claim that entrepreneurial ventures should pay attention to their organizational design in order to improve performance. However, a clear understanding of these ventures’ organizational design is still missing. In this paper, we borrow the key organizational design elements from the literature on established firms and we study them simultaneously to provide a first empirical overview on the organization of the entrepreneurial ventures. Specifically, we investigate whether and how organizational design elements cluster together in different organizational configurations. To do so, we analyze a sample of 255 Italian entrepreneurial ventures, focusing on their entrepreneurial team and on the most important organizational design elements: hierarchical structure, size, functional specialization, and allocation of decision authority. To this end, we first use t tests, ANOVA tests, and Scheffe post hoc tests to explore the associations between the organizational design elements and four contingency factors (i.e., entrepreneurial venture’s size, age, industry, and geographical location). Then, we adopt a two-step cluster analysis to understand whether and how the complementarities and interdependencies among organizational design elements give rise to organizational configurations. Results reveal the presence of three distinct configurations, which we named collaborative ET, centric ET, and professional ET
    • …
    corecore