16 research outputs found

    A Direct Reduction from k-Player to 2-Player Approximate Nash Equilibrium

    Full text link
    We present a direct reduction from k-player games to 2-player games that preserves approximate Nash equilibrium. Previously, the computational equivalence of computing approximate Nash equilibrium in k-player and 2-player games was established via an indirect reduction. This included a sequence of works defining the complexity class PPAD, identifying complete problems for this class, showing that computing approximate Nash equilibrium for k-player games is in PPAD, and reducing a PPAD-complete problem to computing approximate Nash equilibrium for 2-player games. Our direct reduction makes no use of the concept of PPAD, thus eliminating some of the difficulties involved in following the known indirect reduction.Comment: 21 page

    Tokamak cooling systems and power conversion system options

    Get PDF
    DEMO will be a fusion power plant demonstrating the integration into the grid architecture of an electric utility grid. The design of the power conversion chain is of particular importance, as it must adequately account for the specifics of nuclear fusion on the generation side and ensure compatibility with the electric utility grid at all times. One of the special challenges the foreseen pulsed operation, which affects the operation of the entire heat transport chain. This requires a time-dependant analysis of different concept design approaches to ensure proof of reliable operation and efficiency to obtain nuclear licensing. Several architectures of Balance of Plant were conceived and developed during the DEMO Pre-Concept Design Phase in order to suit needs and constraints of the in-vessel systems, with particular regard to the different blanket concepts. At this early design stage, emphasis was given to the achievement of robust solutions for all essential Balance of Plant systems, which have chiefly to ensure feasible and flexible operation modes during the main DEMO operating phases – Pulse, Dwell and ramp-up/down – and to adsorb and compensate for potential fusion power fluctuations during plasma flat-top. Although some criticalities, requiring further design improvements were identified, these preliminary assessments showed that the investigated cooling system architectures have the capability to restore nominal conditions after any of the abovementioned cases and that the overall availability could meet the DEMO top-level requirements. This paper describes the results of the studies on the tokamak coolant and Power Conversion System (PCS) options and critically highlights the aspects that require further work

    A Mathematical Model of Dignāga’s Hetu-cakra

    No full text

    Tokamak cooling systems and power conversion system options

    No full text
    DEMO will be a fusion power plant demonstrating the integration into the grid architecture of an electric utility grid. The design of the power conversion chain is of particular importance, as it must adequately account for the specifics of nuclear fusion on the generation side and ensure compatibility with the electric utility grid at all times. One of the special challenges the foreseen pulsed operation, which affects the operation of the entire heat transport chain. This requires a time-dependant analysis of different concept design approaches to ensure proof of reliable operation and efficiency to obtain nuclear licensing. Several architectures of Balance of Plant were conceived and developed during the DEMO Pre-Concept Design Phase in order to suit needs and constraints of the in-vessel systems, with particular regard to the different blanket concepts. At this early design stage, emphasis was given to the achievement of robust solutions for all essential Balance of Plant systems, which have chiefly to ensure feasible and flexible operation modes during the main DEMO operating phases – Pulse, Dwell and ramp-up/down – and to adsorb and compensate for potential fusion power fluctuations during plasma flat-top. Although some criticalities, requiring further design improvements were identified, these preliminary assessments showed that the investigated cooling system architectures have the capability to restore nominal conditions after any of the abovementioned cases and that the overall availability could meet the DEMO top-level requirements. This paper describes the results of the studies on the tokamak coolant and Power Conversion System (PCS) options and critically highlights the aspects that require further work

    Overview of the HCPB Research Activities in EUROfusion

    No full text
    In the framework of the EUROfusion's Power Plant Physics and Technology, the working package breeding blanket (BB) aims at investigating four different BB concepts for an EU demonstration fusion reactor (DEMO). One of these concepts is the helium-cooled pebble bed (HCPB) BB, which is based on the use of pebble beds of lithiated ternary compounds and Be or beryllides as tritium breeder and multiplier materials, respectively, EUROFER97 as structural steel and He as coolant. This paper aims at giving an overview of the EU HCPB BB Research and Development (RD) being developed at KIT, in collaboration with Wigner-RCP, BUTE-INT, and CIEMAT. The paper gives an outline of the HCPB BB design evolution, state-of-the-art basic functionalities, requirements and performances, and the associated RD activities in the areas of design, functional materials, manufacturing, and testing. In addition, attention is given also to the activities dedicated to the development of heat transfer augmentation techniques for the first wall and the corresponding testing. Due to their nature as design drivers, a brief overview in the RD of key HCPB interfacing areas is given as well, namely, the tritium extraction and recovery system, the primary heat transfer and power conversion systems, and safety topics, as well as some specific activities regarding the integration of in-vessel systems through the BB. As concluding remarks, an outline of the standing challenges and future RD plans is summarized

    Maturation of critical technologies for the DEMO balance of plant systems

    No full text
    The Pre-Concept Design (PCD) of the Balance of Plant (BoP) systems of the EU-DEMO power plant is described in this paper for both breeding blanket (BB) concepts under assessment, namely the Water Cooled Lithium Lead (WCLL) BB and the Helium Cooled Pebble Bed (HCPB) BB. Moreover, the results of a preliminary evaluation of a number of BoP variants are discussed. This paper outlines the steps of the BoP design development, highlighting the project objectives and the strategy for their achievement under the very challenging requirements which include, among others, the intermittent nature of the DEMO plasma heat source. The main achievements during the PCD Phase will be reported together with the development plan for the Concept Design (CD) Phase to reach a mature (feasible) BoP concept for DEMO
    corecore