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Introduction AT u”"
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= The EUROfusion’s Breeding Blanket (BB) Project

= WP1-HCPB = WP2-HCLL = WP3-WCLL = WP4-DCLL

1. Concept definition and description
2. Design & Analyses
3. R&D functional materials

R&D Manufacturing & testing

R&D FW heat transfer augmentation
Systems integration activities

Key interfaces activities: BoP, Safety and TER
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HCPB Design Description

= EU DEMO1 Tokamak baseline 2015

" Rp=9.1Im,a=29m, A=3.1
= Burn time = 2hr, dwell time 0.5hr
" I:)fusion = 2037 M\NI

= 18 sectors
= 3 0B + 2 IB segments / sector

o—0

HCPB Description

Upper port
shield plug

KIT

Karlsruher Institut fiir Technologie

©

= Reference HCPB BL2015 V4

7 breeding blanket

modules/segment

= Feedpipes through
upper port

= OB inlet: DN300

= OB outlet: DN350

= |B inlet: DN250

= |B outlet: DN300

= Purge gas

inlet/outlet: DN80O

Vacuum
vessel
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HCPB Design Description IT @)

= Reference HCPB BL2015 V4  BSSManifold ggg panifold

outki‘t/lineS inlet pocket
&\

4

SS g

= Coolant:

» Inert, transparent, 1-phase
» He, 8 MPa, limit: Ap
» T.,=300°C, limit: DBTT
» T, = 500°C, limit: creep
= Purge gas:

» He +0.1vol% H,

—

Cooling _
CPs)
Double Back

caps plate Shielding packs

=
=
[

. ) . o)
Revision 2015, Previously: ,Bier-box’, » Alt.: He +0.1vol% H,0
CPs , / (EUROFER) ,Sandwich* concept TBM-like

= Materials:

» Breeder: Li,SiO, pebbles, $0.25-0.65mm (ref. TBM)
° T ..=920°C, limit: microstructure changes
* T, = maximize (T-release rate)

» Multiplier: Be pebbles @1mm (ref. TBM)
* T, =650 °C, limit: swelling, integrity
* T, = maximize (T-release rate)
R » Steel: EUROFER97 / advanced EUROFER97
~lh2s \‘9 ;  520mm 08 * T..,.=550°C/650°C, limit: creep
| (230 mm, IB) « T_. =350°C/350 °C, limit: DBTT

HCPB Description
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HCPB Design & Analysis Activities <XIT r“*
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HCPB Design & Analysis Activities  <XIT {C)
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= Design cycle of the DEMO HCPB BB:

( Preliminary )
conceptual design

Thermomechanics (TM) under in-box LOCA
Neutronics

Thermohydraulics (TH)

TM normal/off-normal (disruptions)
operation

( Preliminary )
conceptual design

= Sequencial design cycle:

W e

= Difficulty to conciliate many aspects in each
step: safety, manufacturing feasibility,
nuclear + TH + TM, materials and costs

= Neutronics+TH+TM coupling studies
= Pebble beds thermomechanics: DEM

o—0——0

Design & Analysis
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R&D Functional Materials: ST T
. N\ |
Ceramic Breeders = O

= Reference EU CB: Li,SiO,
= “Advanced CB”: Li,SiO, + additions of Li,TiO,

= From eutectic (25mol% Li,TiO;), Li,TiO; dominates

= Li-Densityd, TBRY, crush load 1 = ? "\l—“f’ 2
- 40 T
1. Production of Advanced Ceramic breeders (CBs) £, | SRRV
2 | Z
= The KALOS (KArlIsruhe Lithium OrthoSilicate) Process 5 w I A s B3
» Melt processing at 1350 + 1400 °C g —+ = §
» Droplet generation by jet decay — 112 &

» Pebble solidification by liquid nitrogen spray Li, TiO, content [mol%]

» Optical monitoring by high-speed camera and image
processing

» Mean pebble size 650 um, adjustable
» Batch process (ca. 1kg), but straightforward scale-up

2. Qualification of advanced CBs

= Composition, recycling, activation, conductivity, stability
= Characterization unirradiated: corrosion, steel compatibility
= Characterization irradiated: “T” (D) loading and release

+—0—0—0

Funcional Materials
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R&D Functional Materials: P
Neutron Multiplier Materials (NMv) I 2

. Characterization

Reference EU NMM: Beryllium ® — " Hegas
“Advanced Be-based NMM”: Be,Ti, Be,,Cr...

= Reduced content of Be: lower swelling, less water-reactive,  w eiectrode
increased upper temperature limit, but lower T-breeding

Production of Be NMM:
= Reference EU: Rotating Electrode Method, REM (NGK, Japan)

» Limited scalability to mass production, costly

“rotating
electrode (Be)

= Alternative cost-effective routes (under F&E contract):

» Ball milling of Be-billets
» Scrap from fluoride reduction method Steel jacket

Development of beryllides (KIT + TU Berlin)

= Rod by hot extrusion Be-Ti powder mixtures + REM

= Unirradiated pebbles: T-release, oxidation, interactions...
= |rradiated NGK pebbles: HIDOBE 01 & 02, <6000apm, <750°C
» Creep, swelling,T-release, retention, activation...

*+—0—0—0

Funcional Materials
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R&D Manufacturing and Testing NGK®)
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= Realization of key HCPB components:

= Technology development and standardization L
= Mock-Ups (MU) qualification with codes & standards
= |ndustrial contracts for long-term collaboration

= Main manufacturing and assembly routes:

= Electrical Discharge Machining (EDM): et~
» FW and CP cooling channels, with pilot hole by EDM

FW demonstrator

= Cold forming for non-planar plates
= E.g. % FW demonstrator: EDM + cold bending
= Joining: Electron Beam welding

= Special manufacturing techniques

= Selective Laser Syntering (SLS): complex parts
= Hybrid assemblies: CNC + SLS + EB
= FW artificial roughness (AR) with die sink EDM

= MU testing in He-loops (HELOKA, KATHELO)
= Full-scale FW + sustained 1 MW/m? FW with AR

00— 0—0

Manufacturing
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R&D FW Heat Transfer Augmentation — \CIT @)
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" Heat Transfer Augmentation by rib-roughening: B 22
485 250
= Motivation: HHF FW regions at upper and lower port 0 225
= Ribs: HTCT, but for same cooling, flow rate reduced | yump % M B o~ .
= Ribbed channels sustaining HHF for same P, ! o .
. . . i o 75 Mises
= E.g. recent design point studies: 360 Temperature o 0 stresses

[°C] [MPa]

= Squared channels of 12.5mm, 60 g/s channel (59 m/s)
= Transversal ribs (TSR), HTC = 9500 W/(m?K), Ap = 0.52 bar/m

—_ 8000 T T - —_— 30 I I I I i | °
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Key HCPB Interfaces Activities: BoP ~IT @)
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" |Integration of the HCPB BB into the BoP

= Currently, 3 cooling circuits: PHTS Hrs - B00°C B . st
e = 450°C ‘
- . e 480°C
: PHTS: HCPB BB | — r“*‘ i
IHTS: Energy Storage System (ESS) with molten = E N Tt ] -
salt (similarly as in Concentrated Solar Power) o T Steam | Staged Turbine
= PCS: Rankine cycle, water as working fluid OB M % Generator .
0~ &3 {ll__'_u = =] ondenser
= Definition of components & loops fte LJ‘ = ,
characteristics: e 0S| e (g et Heer T
= 3B+ 6 OB loops, 2 circulators / loop l— o ol - el -
= 1 IHX / loop coupling PHTS loops with to ESS s gg gg \%j g
= Steam Generator coupling ESS with PCS W  Divertor Divertor
= PCS: “conventional”, but with many heat sources Castle  FFG

= Architecture of BoP

= Credibility of a HCPB-DEMO depends on compatibility with state-of-the-art technology!
= Some tech. extrapolation assumed for circulators: available 5-6MW, needed =<8MW
" Nyw=36%, high Ty, advantage shadowed due to particular DEMO features (ESS)

= Synergies at BB design level: get closer to AGRs, GenlV-HTRs values: T, .1, P.. {, off-the-shelf tech.

out

o0——0——0——0———0——0—0@

HCPB Interfaces
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Key HCPB Interfaces Activities: Safety

= FFMEA->PIEs->critical events (within DBA)
= Loss of flow accident (LOFA) in FW I
» CFD model set-up for 1+2 channels

» RELAP5-3D for mitigating features (circuit /
circulator redundancy, plasma shutdown) Sector 2

» Codes validation with LOFA experiment
= Deterministic LOCAs with MELCOR186:

» In-box LOCA (1 CP break), in-vessel (FW Ll
channels break), integrated in 1 OB loop PHTS ‘

{ ol ppe?h

= He OB inventory: 9.5 ton = detailed 1x OB4 module
= Combined VVPSS & EV concept, EV potentially reduced =80%

= Simulation of runaway e event

= Future work:

= Analysis of ex-vessel LOCA
= Modelling of the HCPB BB integrated into ist PHTS and auxiliary systems of BoP using RELAP5-3D

= Synergies at BB design level: pipework upper port, study possibility to pHel (HTRs, 6-7MPa)

o0——0——0——0———0——0—0@
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Systems Integration Activities IT
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O

= Development of a HCPB BB attachment

= Key interfacing component between VV and BB
= Attachment system
» Defines segments kinematics (affects RM)

» Affects segments internal stresses e
= EM analyses of disruptions events -> input EM forces - - r
= Analyses of full HCPB DEMO sectors with EM + R

thermal + gravity + coolant pressure loads

= Fueling lines integration:

= Current baseline: 1 line between IB segments
= Affected BB region: increased gap -> n streaming
= Further work:

» On cooling: passive or active

» On fixation: VV or BB

» Thermohydraulics + thermomechanics

1 2 3 4 5 6 7 8

Systems Integration
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Summary, Challenges and Future Plans 2XIT @)
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= HCPB R&D focused on BB specifics + key interfaces driving the design

= HCPB development achievements (with respect to former concepts):

= Design simplification: thermohydraulics, assembly and manufacturing, pipework

= HCPB actively working with interfaces to propose mitigating actions for a credible holistic solution!
= Advanced CBs: significant gains in strength, up-scalable production

= Be: alternative, cost-effective production routes

= Challenges:

= EU Roadmap: “pragmatic approach” -> Reliability and Availability -> Mature technologies preferred
= High uncertainties in DEMO architecture -> resilient, flexible BB designs
= FW HHF cooling without penalizing Ap

= Future design and R&D plans

= Redefine HCPB concept to reach figures with gas-cooled reactors (HTRs/AGRs): P, Pue » (The out)
= Broadening palette of CB (for higher T breeding) and NMM (beryllides, Be alternatives)

.}\J(IT Ciemalt dﬁt <ﬁl§l‘lEl‘ Email: francisco.hernandez@kit.edu

her Institut fiir Technologie
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