863 research outputs found

    DEVELOPMENT OF CEMENTITIOUS MATERIALS FOR ADHESION TYPE APPLICATIONS COMPRISING CALCIUM SULFOALUMINATE (CSA) CEMENT AND LATEX POLYMER

    Get PDF
    The objective of this research was to develop high performing polymer modified calcium sulfoaluminate (CSA) cement materials for use in applications requiring superior adhesion characteristics. Little information is available describing interactions of CSA cement containing minor phase tri-calcium aluminate (C3A) with commonly used admixtures. Given the scarcity of information, a basic approach for developing cementitious materials was followed. The basic approach consisted of four tasks: cement design, admixture design, polymer design and testing developed materials. The iterative, time consuming process is necessary for understanding the influence of specific constituent components on overall system behavior. Results from the cement design task suggest calcium sulfate type influences microstructural characteristics and strength development for materials based upon the experimental CSA cement. Results from the admixture design task suggest lithium carbonate and tartaric acid are effective accelerating and retarding admixtures for hydration reactions including reactants yeelimite, calcium sulfate and water. Results from the polymer design task suggest vinyl acetate / ethylene (VAE) dispersible polymer powders (DPP) are compatible with systems containing the experimental CSA cement and other commonly used admixtures. Additionally, results from the polymer design task highlight a method for specifying the ductile behavior of materials containing the experimental CSA cement as majority hydraulic binding agent. Finally, results from the testing of developed materials task suggests adhesion performance for materials containing the experimental CSA cement can be influenced by adjusting the ratio of polymer to hydraulic binding agent in material formulations. Polymer modified CSA cement mortars demonstrated bond strength resulting in substrate failure when cast over porous concrete substrates. Developed mortars demonstrated consistent bonding performance when applied to non-porous substrate materials, metal and glass. Select polymer modified mortars displayed adhesion bond performance such that the glass substrate materials fractured during pull off testing

    Observations of Peak Strength Behavior in CSA Cement Mortars

    Get PDF
    The purpose of this study was to assess the mechanical property performance behavior of calcium sulfoaluminate (CSA) cement mortar when cured at ambient laboratory temperature of ~23°C (73°F) and constant 50% relative humidity for an extended period of time. Four CSA cement mortars were tested. Three CSA cement mortars contained equivalent mass amounts of calcium sulfate; whereas, the fourth mortar contained double the amount of calcium sulfate. The three CSA cement mortars containing constant mass amounts of calcium sulfate differed as the specific type of calcium sulfate varied across the three formulations—one mortar containing solely anhydrite, one mortar contained half anhydrite and half gypsum while the other mortar solely contained gypsum. The fourth mortar contained double the amount of calcium sulfate when compared with the others while having a 1/1 blend of anhydrite and gypsum. Specific mortars were either tested for direct tensile strength according to ASTM C307 or for compressive strength according to ASTM C109. All tested mortars displayed statistically significant strength loss trends versus time when cured at constant 50% relative humidity. Cement paste samples were analyzed with TGA/SDT and XRD in an effort to identify microstructure changes corresponding to observed strength loss. Cement paste analysis suggests strength loss within the tested CSA cement mortars occurred as a result of ettringite decomposition

    Capturing diagnosis-timing in ICD-coded hospital data: recommendations from the WHO ICD-11 topic advisory group on quality and safety

    Get PDF
    Purpose To develop a consensus opinion regarding capturing diagnosis-timing in coded hospital data. Methods As part of the World Health Organization International Classification of Diseases-11th Revision initiative, the Quality and Safety Topic Advisory Group is charged with enhancing the capture of quality and patient safety information in morbidity data sets. One such feature is a diagnosis-timing flag. The Group has undertaken a narrative literature review, scanned national experiences focusing on countries currently using timing flags, and held a series of meetings to derive formal recommendations regarding diagnosis-timing reporting. Results The completeness of diagnosis-timing reporting continues to improve with experience and use; studies indicate that it enhances risk-adjustment and may have a substantial impact on hospital performance estimates, especially for conditions/procedures that involve acutely ill patients. However, studies suggest that its reliability varies, is better for surgical than medical patients (kappa in hip fracture patients of 0.7-1.0 versus kappa in pneumonia of 0.2-0.6) and is dependent on coder training and setting. It may allow simpler and more precise specification of quality indicators. Conclusions As the evidence indicates that a diagnosis-timing flag improves the ability of routinely collected, coded hospital data to support outcomes research and the development of quality and safety indicators, the Group recommends that a classification of ‘arising after admission' (yes/no), with permitted designations of ‘unknown or clinically undetermined', will facilitate coding while providing flexibility when there is uncertainty. Clear coding standards and guidelines with ongoing coder education will be necessary to ensure reliability of the diagnosis-timing fla

    Room temperature cathodoluminescence quenching of Er3+ in AlNOEr

    Get PDF
    This paper reports a cathodoluminescence (CL) spectroscopic study of nanogranular AlNOEr x samples with erbium content, x, in the range 0.5–3.6 at%. A wide range of erbium concentration was studied with the aim of understanding the concentration quenching of CL. The composition of thin films, deposited by radiofrequency reactive magnetron sputtering, was accurately determined by Energy Dispersive X-ray Spectroscopy (EDS). CL emission was investigated in the extended visible spectral range from 350 nm to 850 nm. The critical concentration of luminescent activator Er 3+ above which CL quenching occurs is 1%; the corresponding critical distance between Er 3+ ions in AlNOEr x is about 1.0 nm. The quenching mechanism is discussed. We discount an exchange-mediated interaction in favour of a multipole-multipole phonon-assisted interaction

    Non-radial null geodesics in spherical dust collapse

    Full text link
    The issue of the local visibility of the shell-focussing singularity in marginally bound spherical dust collapse is considered from the point of view of the existence of future-directed null geodesics with angular momentum which emanate from the singularity. The initial data (i.e. the initial density profile) at the onset of collapse is taken to be of class C3C^3. Simple necessary and sufficient conditions for the existence of a naked singularity are derived in terms of the data. It is shown that there exist future-directed non-radial null geodesics emanating from the singularity if and only if there exist future-directed radial null geodesics emanating from the singularity. This result can be interpreted as indicating the robustness of previous results on radial geodesics, with respect to the presence of angular momentum.Comment: 26 pages, 1 figur

    Patients' perceptions of the potential of breathing training for asthma: a qualitative study.

    Get PDF
    Poor symptom control is common in asthma. Breathing training exercises may be an effective adjunct to medication; it is therefore important to understand facilitators and barriers to uptake of breathing training exercises

    A cryogenic testbed for the characterisation of large detector arrays for astronomical and Earth-observing applications in the near to very-long-wavelength infrared

    Get PDF
    In this paper we describe a cryogenic testbed designed to offer complete characterisation-via a minimal number of experimental configurations— of mercury cadmium telluride (MCT) detector arrays for low-photon background applications, including exoplanet science and solar system exploration. Specifically, the testbed offers a platform to measure the dark current of detector arrays at various temperatures, whilst also characterising their optical response in numerous spectral bands. The average modulation transfer function (MTF) can be found in both dimensions of the array along with the overall quantum efficiency. Working from a liquid-helium bath allows for measurement of arrays from 4.2 K and active-temperature control of the surface to which the array is mounted allows for characterisation of arrays at temperatures up to 80 K, with the temperature of the array holder known to an accuracy of at least 1 mK, with the same level of long-term stability

    On isotropic cylindrically symmetric stellar models

    Full text link
    We attempt to match the most general cylindrically symmetric vacuum space-time with a Robertson-Walker interior. The matching conditions show that the interior must be dust filled and that the boundary must be comoving. Further, we show that the vacuum region must be polarized. Imposing the condition that there are no trapped cylinders on an initial time slice, we can apply a result of Thorne's and show that trapped cylinders never evolve. This results in a simplified line element which we prove to be incompatible with the dust interior. This result demonstrates the impossibility of the existence of an isotropic cylindrically symmetric star (or even a star which has a cylindrically symmetric portion). We investigate the problem from a different perspective by looking at the expansion scalars of invariant null geodesic congruences and, applying to the cylindrical case, the result that the product of the signs of the expansion scalars must be continuous across the boundary. The result may also be understood in relation to recent results about the impossibility of the static axially symmetric analogue of the Einstein-Straus model.Comment: 13 pages. To appear in Classical and Quantum Gravit
    • …
    corecore