99 research outputs found
Production of Long-Lived Ultracold Li2 Molecules from a Fermi gas
We create weakly-bound Li2 molecules from a degenerate two component Fermi
gas by sweeping a magnetic field across a Feshbach resonance. The atom-molecule
transfer efficiency can reach 85% and is studied as a function of magnetic
field and initial temperature. The bosonic molecules remain trapped for 0.5 s
and their temperature is within a factor of 2 from the Bose-Einstein
condensation temperature. A thermodynamical model reproduces qualitatively the
experimental findings
Conversion of an Atomic Fermi Gas to a Long-Lived Molecular Bose Gas
We have converted an ultracold Fermi gas of Li atoms into an ultracold
gas of Li molecules by adiabatic passage through a Feshbach resonance.
Approximately molecules in the least-bound, ,
vibrational level of the X singlet state are produced with an
efficiency of 50%. The molecules remain confined in an optical trap for times
of up to 1 s before we dissociate them by a reverse adiabatic sweep.Comment: Accepted for publication in Phys. Rev. Letter
Quantitative comparison between theoretical predictions and experimental results for the BCS-BEC crossover
Theoretical predictions for the BCS-BEC crossover of trapped Fermi atoms are
compared with recent experimental results for the density profiles of Li.
The calculations rest on a single theoretical approach that includes pairing
fluctuations beyond mean field. Excellent agreement with experimental results
is obtained. Theoretical predictions for the zero-temperature chemical
potential and gap at the unitarity limit are also found to compare extremely
well with Quantum Monte Carlo simulations and with recent experimental results.Comment: 4 pages, 3 eps figure
Measurement of interaction energy near a Feshbach resonance in a 6Li Fermi gas
We investigate the strongly interacting regime in an optically trapped Li
Fermi mixture near a Feshbach resonance. The resonance is found at G
in good agreement with theory. Anisotropic expansion of the gas is interpreted
by collisional hydrodynamics. We observe an unexpected and large shift (G)
between the resonance peak and both the maximum of atom loss and the change of
sign of the interaction energy.Comment: 4 pages, 4 figure
Coherence properties of a 2D trapped Bose gas around the superfluid transition
We measure the momentum distribution of a 2D trapped Bose gas and observe the
increase of the range of coherence around the Berezinskii-Kosterlitz-Thouless
(BKT) transition. We quantitatively compare our observed profiles to both a
Hartee-Fock mean-field theory and to quantum Monte-Carlo simulations. In the
normal phase, we already observe a sharpening of the momentum distribution.
This behavior is partially captured in a mean-field approach, in contrast to
the physics of the BKT transition
Bosons and Fermions near Feshbach resonances
Near Feshbach resonances, , systems of Bose and Fermi particles
become strongly interacting/dense. In this unitary limit both bosons and
fermions have very different properties than in a dilute gas, e.g., the energy
per particle approach a value times an universal many-body
constant. Calculations based upon an approximate Jastrow wave function can
quantitatively describe recent measurements of trapped Bose and Fermi atoms
near Feshbach resonances.
The pairing gap between attractive fermions also scales as
near Feshbach resonances and is a large fraction
of the Fermi energy - promising for observing BCS superfluidity in traps.
Pairing undergoes several transitions depending on interaction strength and the
number of particles in the trap and can also be compared to pairing in nuclei.Comment: Revised version extended to include recent molecular BEC-BCS result
Probing quantum phases of ultracold atoms in optical lattices by transmission spectra in cavity QED
Studies of ultracold atoms in optical lattices link various disciplines,
providing a playground where fundamental quantum many-body concepts, formulated
in condensed-matter physics, can be tested in much better controllable atomic
systems, e.g., strongly correlated phases, quantum information processing.
Standard methods to measure quantum properties of Bose-Einstein condensates
(BECs) are based on matter-wave interference between atoms released from traps
which destroys the system. Here we propose a nondestructive method based on
optical measurements, and prove that atomic statistics can be mapped on
transmission spectra of a high-Q cavity. This can be extremely useful for
studying phase transitions between Mott insulator and superfluid states, since
various phases show qualitatively distinct light scattering. Joining the
paradigms of cavity quantum electrodynamics (QED) and ultracold gases will
enable conceptually new investigations of both light and matter at ultimate
quantum levels, which only recently became experimentally possible. Here we
predict effects accessible in such novel setups.Comment: 6 pages, 3 figure
Hydrodynamic behavior in expanding thermal clouds of Rb-87
We study hydrodynamic behavior in expanding thermal clouds of Rb-87 released
from an elongated trap. At our highest densities the mean free path is smaller
than the radial size of the cloud. After release the clouds expand
anisotropically. The cloud temperature drops by as much as 30%. This is
attributed to isentropic cooling during the early stages of the expansion. We
present an analytical model to describe the expansion and to estimate the
cooling. Important consequences for time-of-flight thermometry are discussed.Comment: 7 pages with 2 figure
Diagnostic criteria for cancer cachexia: Reduced food intake and inflammation predict weight loss and survival in an international, multi-cohort analysis
Abstract Background Cancer‐associated weight loss (WL) associates with increased mortality. International consensus suggests that WL is driven by a variable combination of reduced food intake and/or altered metabolism, the latter often represented by the inflammatory biomarker C‐reactive protein (CRP). We aggregated data from Canadian and European research studies to evaluate the associations of reduced food intake and CRP with cancer‐associated WL (primary endpoint) and overall survival (OS, secondary endpoint). Methods The data set included a total of 12,253 patients at risk for cancer‐associated WL. Patient‐reported WL history (% in 6 months) and food intake (normal, moderately, or severely reduced) were measured in all patients; CRP (mg/L) and OS were measured in N = 4960 and N = 9952 patients, respectively. All measures were from a baseline assessment. Clinical variables potentially associated with WL and overall survival (OS) including age, sex, cancer diagnosis, disease stage, and performance status were evaluated using multinomial logistic regression MLR and Cox proportional hazards models, respectively. Results Patients had a mean weight change of −7.3% (±7.1), which was categorized as: ±2.4% (stable weight; 30.4%), 2.5–5.9% (19.7%), 6.0–10.0% (23.2%), 11.0–14.9% (12.0%), ≥15.0% (14.6%). Normal food intake, moderately, and severely reduced food intake occurred in 37.9%, 42.8%, and 19.4%, respectively. In MLR, severe WL (≥15%) (vs. stable weight) was more likely (P 100 mg/L: OR 2.30 (95% CI 1.62–3.26)]. Diagnosis, stage, and performance status, but not age or sex, were significantly associated with WL. Median OS was 9.9 months (95% CI 9.5–10.3), with median follow‐up of 39.7 months (95% CI 38.8–40.6). Moderately and severely reduced food intake and CRP independently predicted OS (P < 0.0001). Conclusions Modelling WL as the dependent variable is an approach that can help to identify clinical features and biomarkers associated with WL. Here, we identify criterion values for food intake impairment and CRP that may improve the diagnosis and classification of cancer‐associated cachexia
- …