21 research outputs found

    Drought-induced dieback of Pinus nigra: A tale of hydraulic failure and carbon starvation

    Get PDF
    Ongoing climate change is apparently increasing tree mortality rates, and understanding mechanisms of drought-induced tree decline can improve mortality projections. Differential drought impact on conspecific individuals within a population has been reported, but no clear mechanistic explanation for this pattern has emerged. Following a severe drought (summer 2012), we monitored over a 3-year period healthy (H) and declining (D) Pinus nigra trees co-occurring in a karstic woodland to highlight eventual individual-specific physiological differences underlying differential canopy dieback. We investigated differences in water and carbon metabolism, and xylem anatomy as a function of crown health status, as well as eventual genotypic basis of contrasting drought responses. H and D trees exploited the same water pools and relied on similar hydraulic strategies to cope with drought stress. Genetic analyses did not highlight differences between groups in terms of geographical provenance. Hydraulic and anatomical analyses showed conflicting results. The hydraulic tracheid diameter and theoretical hydraulic conductivity were similar, but D trees were characterized by lower water transport efficiency, greater vulnerability to xylem conduit implosion and reduced carbohydrate stores. Our results suggest that extreme drought events can have different impacts on conspecific individuals, with differential vulnerability to xylem embolism likely playing a major role in setting the fate of trees under climate change

    Clinical features and outcomes of elderly hospitalised patients with chronic obstructive pulmonary disease, heart failure or both

    Get PDF
    Background and objective: Chronic obstructive pulmonary disease (COPD) and heart failure (HF) mutually increase the risk of being present in the same patient, especially if older. Whether or not this coexistence may be associated with a worse prognosis is debated. Therefore, employing data derived from the REPOSI register, we evaluated the clinical features and outcomes in a population of elderly patients admitted to internal medicine wards and having COPD, HF or COPD + HF. Methods: We measured socio-demographic and anthropometric characteristics, severity and prevalence of comorbidities, clinical and laboratory features during hospitalization, mood disorders, functional independence, drug prescriptions and discharge destination. The primary study outcome was the risk of death. Results: We considered 2,343 elderly hospitalized patients (median age 81 years), of whom 1,154 (49%) had COPD, 813 (35%) HF, and 376 (16%) COPD + HF. Patients with COPD + HF had different characteristics than those with COPD or HF, such as a higher prevalence of previous hospitalizations, comorbidities (especially chronic kidney disease), higher respiratory rate at admission and number of prescribed drugs. Patients with COPD + HF (hazard ratio HR 1.74, 95% confidence intervals CI 1.16-2.61) and patients with dementia (HR 1.75, 95% CI 1.06-2.90) had a higher risk of death at one year. The Kaplan-Meier curves showed a higher mortality risk in the group of patients with COPD + HF for all causes (p = 0.010), respiratory causes (p = 0.006), cardiovascular causes (p = 0.046) and respiratory plus cardiovascular causes (p = 0.009). Conclusion: In this real-life cohort of hospitalized elderly patients, the coexistence of COPD and HF significantly worsened prognosis at one year. This finding may help to better define the care needs of this population

    Immaginare le città del futuro

    No full text

    Rooting depth as a key trait connecting water and carbon metabolism of trees

    No full text
    Drought and heat waves are thought to be the main cause of increasing rates of tree die-back in several biomes. Three possible and not mutually exclusive mechanisms have been proposed to be the drivers of this phenomenon: hydraulic failure caused by massive xylem cavitation and leading to plant desiccation, carbon starvation caused by prolonged stomatal closure and leading to impairment of primary and secondary metabolism, and finally biotic attacks. The different mechanisms have been reported to have different relevance in the different species. On the basis of the analysis of seasonal changes of water relations, xylem sap isotopic composition, and concentration of non-structural carbohydrates in different woody species during a summer drought, we propose that rooting depth is a key trait connecting water and carbon plant metabolism, thus mediating the likelihood of hydraulic failure vs carbon starvation in drought-stressed trees
    corecore