516 research outputs found

    A roller-like bird (Coracii) from the Early Eocene of Denmark

    Get PDF
    The fossil record of crown group birds (Neornithes) prior to the Cretaceous-Paleogene boundary is scarce and fragmentary. Early Cenozoic bird fossils are more abundant, but are typically disarticulated and/or flattened. Here we report the oldest roller (Coracii), Septencoracias morsensis gen. et sp. nov. (Primobucconidae), based on a new specimen from the Early Eocene (about 54 million years ago) Fur Formation of Denmark. The new fossil is a nearly complete, three-dimensionally preserved and articulated skeleton. It lies at the lower end of the size range for extant rollers. Salient diagnostic features of Septencoracias relative to other Coracii include the proportionally larger skull and the small, ovoid and dorsally positioned narial openings. Our discovery adds to the evidence that the Coracii had a widespread northern hemisphere distribution in the Eocene. Septencoracias is the oldest substantial record of the Picocoraciae and provides a reliable calibration point for molecular phylogenetic studies

    The Genetic Requirements for Fast and Slow Growth in Mycobacteria

    Get PDF
    Mycobacterium tuberculosis infects a third of the world's population. Primary tuberculosis involving active fast bacterial replication is often followed by asymptomatic latent tuberculosis, which is characterised by slow or non-replicating bacteria. Reactivation of the latent infection involving a switch back to active bacterial replication can lead to post-primary transmissible tuberculosis. Mycobacterial mechanisms involved in slow growth or switching growth rate provide rational targets for the development of new drugs against persistent mycobacterial infection. Using chemostat culture to control growth rate, we screened a transposon mutant library by Transposon site hybridization (TraSH) selection to define the genetic requirements for slow and fast growth of Mycobacterium bovis (BCG) and for the requirements of switching growth rate. We identified 84 genes that are exclusively required for slow growth (69 hours doubling time) and 256 genes required for switching from slow to fast growth. To validate these findings we performed experiments using individual M. tuberculosis and M. bovis BCG knock out mutants. We have demonstrated that growth rate control is a carefully orchestrated process which requires a distinct set of genes encoding several virulence determinants, gene regulators, and metabolic enzymes. The mce1 locus appears to be a component of the switch to slow growth rate, which is consistent with the proposed role in virulence of M. tuberculosis. These results suggest novel perspectives for unravelling the mechanisms involved in the switch between acute and persistent TB infections and provide a means to study aspects of this important phenomenon in vitro

    Sow body condition at weaning and reproduction performance in organic piglet production

    Get PDF
    The objective was to investigate the variation in backfat at weaning and its relations to reproduction results in organic sow herds in Denmark. The study included eight herds and 573 sows. The average backfat at weaning mean�13 mm; SD�4.2 mm) ranging from 10.5 to 17.3 mm among herds shows that it is possible to avoid poor body condition at weaning even with a lactation length of seven weeks or more. No main effect of backfat at weaning on reproduction performance was found, but the probability of a successful reproduction after weaning tended to decrease with decreasing backfat for first parity sows, whereas the opposite was the case for multiparous sows

    MODEST: a web-based design tool for oligonucleotide-mediated genome engineering and recombineering

    Get PDF
    Recombineering and multiplex automated genome engineering (MAGE) offer the possibility to rapidly modify multiple genomic or plasmid sites at high efficiencies. This enables efficient creation of genetic variants including both single mutants with specifically targeted modifications as well as combinatorial cell libraries. Manual design of oligonucleotides for these approaches can be tedious, time-consuming, and may not be practical for larger projects targeting many genomic sites. At present, the change from a desired phenotype (e.g. altered expression of a specific protein) to a designed MAGE oligo, which confers the corresponding genetic change, is performed manually. To address these challenges, we have developed the MAGE Oligo Design Tool (MODEST). This web-based tool allows designing of MAGE oligos for (i) tuning translation rates by modifying the ribosomal binding site, (ii) generating translational gene knockouts and (iii) introducing other coding or non-coding mutations, including amino acid substitutions, insertions, deletions and point mutations. The tool automatically designs oligos based on desired genotypic or phenotypic changes defined by the user, which can be used for high efficiency recombineering and MAGE. MODEST is available for free and is open to all users at http://modest.biosustain.dtu.dk

    Xenoestrogenic activity in blood of European and Inuit populations.

    Get PDF
    Human exposure to persistent organic pollutants (POPs) is ubiquitous and found in all individuals. Studies have documented endocrine disrupting effects and impact on reproduction. The aim of the present study was to compare the level of xenoestrogenic activity in serum of groups with varying POP exposure, and to evaluate correlations to the POP biomarkers, 2,2',4,4',5,5'-hexachlorobiphenyl (CB-153) and 1,1-dichloro-2,2-bis (p-chlorophenyl)-ethylene (p,p'-DDE). No strong consistent association between xenoestrogenic net activity and the two POP markers was found. The results showed that the selected POP markers alone can not predict the integrated xenoestrogenic serum activity. Correlations to the POP markers were found at the extreme edge; the Inuit's and Warsaw study groups eliciting high frequency of samples with ER antagonistic and agonistic activity, respectively. We suggest that the variation in xenoestrogenic serum activity reflects differences in POP exposure mixture, genetic factors and/or life style factors

    Impact of PCB and p,p'-DDE contaminants on human sperm Y : X chromosome ratio: Studies in three European populations and the inuit population in Greenland

    Get PDF
    Recent studies indicate that persistent organohalogen pollutants (POPs) may contribute to sex ratio changes in offspring of exposed populations. Our aim in the present study was to investigate whether exposure to 2,2',4,4',5,5'-hexachlorobiphenyl (PCB-153) and dichlorodiphenyldichloroethene (pp'-DDE) affects sperm Y:X chromosome distribution. SUBJECTS AND METHODS: We obtained semen and blood for analysis of PCB-153 and pp'-DDE levels from 547 men from Sweden, Greenland, Poland (Warsaw), and Ukraine (Kharkiv), with regionally different levels of POP exposure. The proportion of Y- and X-chromosome-bearing sperm in the semen samples was determined by two-color fluorescence in situ hybridization analysis. RESULTS: Swedish and Greenlandic men had on average significantly higher proportions of Y sperm (in both cohorts, 51.2%) and correspondingly higher lipid-adjusted concentrations of PCB-153 (260 ng/g and 350 ng/g, respectively) compared with men from Warsaw (50.3% and 22 ng/g) and Kharkiv (50.7% and 54 ng/g). In the Swedish cohort, log-transformed PCB- 153 and log-transformed pp'-DDE variables were significantly positively associated with Y-chromosome fractions (p-values 0.04 and < 0.001, respectively). On the contrary, in the Polish cohort PCB-153 correlated negatively with the proportion of Y-bearing fraction of spermatozoa (p = 0.008). CONCLUSIONS: The present study indicates that POP exposure might be involved in changing the proportion of ejaculated Y-bearing spermatozoa in human populations. Intercountry differences, with different exposure situations and doses, may contribute to varying Y:X chromosome ratios
    • …
    corecore