69 research outputs found

    Measurement-induced qubit state mixing in circuit QED from up-converted dephasing noise

    Full text link
    We observe measurement-induced qubit state mixing in a transmon qubit dispersively coupled to a planar readout cavity. Our results indicate that dephasing noise at the qubit-readout detuning frequency is up-converted by readout photons to cause spurious qubit state transitions, thus limiting the nondemolition character of the readout. Furthermore, we use the qubit transition rate as a tool to extract an equivalent flux noise spectral density at f ~ 1 GHz and find agreement with values extrapolated from a 1/fĪ±1/f^\alpha fit to the measured flux noise spectral density below 1 Hz.Comment: 5 pages, 4 figures. Final journal versio

    MicroRNA-Related Cofilin Abnormality in Alzheimer's Disease

    Get PDF
    Rod-like structures composed of actin and the actin-binding protein cofilin are found in Alzheimer's disease (AD) patients. However, the mechanisms underlying formation of these structures and their pathological consequences are still largely unknown. We found that microRNAs 103 and 107 repress translation of cofilin, and that reduced levels of miR-103 or miR-107 are associated with elevated cofilin protein levels and formation of rod-like structures in a transgenic mouse model of AD. These results suggest that microRNAs may play an important role in cytoskeletal pathology in AD

    Refractoriness of hepatitis C virus internal ribosome entry site to processing by Dicer in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatitis C virus (HCV) is a positive-strand RNA virus harboring a highly structured internal ribosome entry site (IRES) in the 5' nontranslated region of its genome. Important for initiating translation of viral RNAs into proteins, the HCV IRES is composed of RNA structures reminiscent of microRNA precursors that may be targeted by the host RNA silencing machinery.</p> <p>Results</p> <p>We report that HCV IRES can be recognized and processed into small RNAs by the human ribonuclease Dicer in vitro. Furthermore, we identify domains II, III and VI of HCV IRES as potential substrates for Dicer in vitro. However, maintenance of the functional integrity of the HCV IRES in response to Dicer overexpression suggests that the structure of the HCV IRES abrogates its processing by Dicer in vivo.</p> <p>Conclusion</p> <p>Our results suggest that the HCV IRES may have evolved to adopt a structure or a cellular context that is refractory to Dicer processing, which may contribute to viral escape of the host RNA silencing machinery.</p

    Momordica charantia (bitter melon) inhibits primary human adipocyte differentiation by modulating adipogenic genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Escalating trends of obesity and associated type 2 diabetes (T2D) has prompted an increase in the use of alternative and complementary functional foods. <it>Momordica charantia </it>or bitter melon (BM) that is traditionally used to treat diabetes and complications has been demonstrated to alleviate hyperglycemia as well as reduce adiposity in rodents. However, its effects on human adipocytes remain unknown. The objective of our study was to investigate the effects of BM juice (BMJ) on lipid accumulation and adipocyte differentiation transcription factors in primary human differentiating preadipocytes and adipocytes.</p> <p>Methods</p> <p>Commercially available cryopreserved primary human preadipocytes were treated with and without BMJ during and after differentiation. Cytotoxicity, lipid accumulation, and adipogenic genes mRNA expression was measured by commercial enzymatic assay kits and semi-quantitative RT-PCR (RT-PCR).</p> <p>Results</p> <p>Preadipocytes treated with varying concentrations of BMJ during differentiation demonstrated significant reduction in lipid content with a concomitant reduction in mRNA expression of adipocyte transcription factors such as, peroxisome proliferator-associated receptor Ī³ (PPARĪ³) and sterol regulatory element-binding protein 1c (SREBP-1c) and adipocytokine, resistin. Similarly, adipocytes treated with BMJ for 48 h demonstrated reduced lipid content, perilipin mRNA expression, and increased lipolysis as measured by the release of glycerol.</p> <p>Conclusion</p> <p>Our data suggests that BMJ is a potent inhibitor of lipogenesis and stimulator of lipolysis activity in human adipocytes. BMJ may therefore prove to be an effective complementary or alternative therapy to reduce adipogenesis in humans.</p

    Macrophages in Alzheimerā€™s disease: the blood-borne identity

    Get PDF
    Alzheimerā€™s disease (AD) is a progressive and incurable neurodegenerative disorder clinically characterized by cognitive decline involving loss of memory, reasoning and linguistic ability. The amyloid cascade hypothesis holds that mismetabolism and aggregation of neurotoxic amyloid-Ī² (AĪ²) peptides, which are deposited as amyloid plaques, are the central etiological events in AD. Recent evidence from AD mouse models suggests that blood-borne mononuclear phagocytes are capable of infiltrating the brain and restricting Ī²-amyloid plaques, thereby limiting disease progression. These observations raise at least three key questions: (1) what is the cell of origin for macrophages in the AD brain, (2) do blood-borne macrophages impact the pathophysiology of AD and (3) could these enigmatic cells be therapeutically targeted to curb cerebral amyloidosis and thereby slow disease progression? This review begins with a historical perspective of peripheral mononuclear phagocytes in AD, and moves on to critically consider the controversy surrounding their identity as distinct from brain-resident microglia and their potential impact on AD pathology

    NMDA Mediated Contextual Conditioning Changes miRNA Expression

    Get PDF
    We measured the expression of 187 miRNAs using quantitative real time PCR in the hippocampal CA1 region of contextually conditioned mice and cultured embryonic rat hippocampal neurons after neuronal stimulation with either NMDA or bicuculline. Many of the changes in miRNA expression after these three types of stimulation were similar. Surprisingly, the expression level of half of the 187 measured miRNAs was changed in response to contextual conditioning in an NMDA receptor-dependent manner. Genes that control miRNA biogenesis and components of the RISC also exhibited activity induced expression changes and are likely to contribute to the widespread changes in the miRNA profile. The widespread changes in miRNA expression are consistent with the finding that genes up-regulated by contextual conditioning have longer 3ā€² UTRs and more predicted binding sites for miRNAs. Among the miRNAs that changed their expression after contextual conditioning, several inhibit inhibitors of the mTOR pathway. These findings point to a role for miRNAs in learning and memory that includes mTOR-dependent modulation of protein synthesis

    Balancing the immune response in the brain: IL-10 and its regulation

    Get PDF
    Background: The inflammatory response is critical to fight insults, such as pathogen invasion or tissue damage, but if not resolved often becomes detrimental to the host. A growing body of evidence places non-resolved inflammation at the core of various pathologies, from cancer to neurodegenerative diseases. It is therefore not surprising that the immune system has evolved several regulatory mechanisms to achieve maximum protection in the absence of pathology. Main body: The production of the anti-inflammatory cytokine interleukin (IL)-10 is one of the most important mechanisms evolved by many immune cells to counteract damage driven by excessive inflammation. Innate immune cells of the central nervous system, notably microglia, are no exception and produce IL-10 downstream of pattern recognition receptors activation. However, whereas the molecular mechanisms regulating IL-10 expression by innate and acquired immune cells of the periphery have been extensively addressed, our knowledge on the modulation of IL-10 expression by central nervous cells is much scattered. This review addresses the current understanding on the molecular mechanisms regulating IL-10 expression by innate immune cells of the brain and the implications of IL-10 modulation in neurodegenerative disorders. Conclusion: The regulation of IL-10 production by central nervous cells remains a challenging field. Answering the many remaining outstanding questions will contribute to the design of targeted approaches aiming at controlling deleterious inflammation in the brain.We acknowledge the Portuguese Foundation for Science and Technology (FCT) for providing a PhD grant to DLS (SFRH/BD/88081/2012) and a post-doctoral fellowship to SR (SFRH/BPD/72710/2010). DS, AGC and SR were funded by FEDER through the Competitiveness Factors Operational Programme (COMPETE) and National Funds through FCT under the scope of the project POCI-01-0145-FEDER007038; and by the project NORTE-01-0145-FEDER-000013, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). The MS lab was financed by Fundo Europeu de Desenvolvimento Regional (FEDER) funds through the COMPETE 2020ā€”Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT in the framework of the project ā€œInstitute for Research and Innovation in Health Sciences ā€ (POCI-01-0145-FEDER-007274). MS is a FCT Associate Investigator. The funding body had no role in the design of the study and collection, analysis, and interpretation of the data and in writing the manuscript

    MicroRNA networks direct neuronal development and plasticity

    Get PDF
    MicroRNAs (miRNAs) constitute a class of small, non-coding RNAs that act as post-transcriptional regulators of gene expression. In neurons, the functions of individual miRNAs are just beginning to emerge, and recent studies have elucidated roles for neural miRNAs at various stages of neuronal development and maturation, including neurite outgrowth, dendritogenesis, and spine formation. Notably, miRNAs regulate mRNA translation locally in the axosomal and synaptodendritic compartments, and thereby contribute to the dynamic spatial organization of axonal and dendritic structures and their function. Given the critical role for miRNAs in regulating early brain development and in mediating synaptic plasticity later in life, it is tempting to speculate that the pathology of neurological disorders is affected by altered expression or functioning of miRNAs. Here we provide an overview of recently identified mechanisms of neuronal development and plasticity involving miRNAs, and the consequences of miRNA dysregulation

    Modes of AĪ² toxicity in Alzheimerā€™s disease

    Get PDF
    Alzheimerā€™s disease (AD) is reaching epidemic proportions, yet a cure is not yet available. While the genetic causes of the rare familial inherited forms of AD are understood, the causes of the sporadic forms of the disease are not. Histopathologically, these two forms of AD are indistinguishable: they are characterized by amyloid-Ī² (AĪ²) peptide-containing amyloid plaques and tau-containing neurofibrillary tangles. In this review we compare AD to frontotemporal dementia (FTD), a subset of which is characterized by tau deposition in the absence of overt plaques. A host of transgenic animal AD models have been established through the expression of human proteins with pathogenic mutations previously identified in familial AD and FTD. Determining how these mutant proteins cause disease in vivo should contribute to an understanding of the causes of the more frequent sporadic forms. We discuss the insight transgenic animal models have provided into AĪ² and tau toxicity, also with regards to mitochondrial function and the crucial role tau plays in mediating AĪ² toxicity. We also discuss the role of miRNAs in mediating the toxic effects of the AĪ² peptide
    • ā€¦
    corecore