196 research outputs found

    Shear strength contribution provided by inorganic-matrix composites fully wrapped around reinforced concrete beams

    Get PDF
    Fiber-reinforced cementitious matrix (FRCM) composites have been increasingly employed as externally bonded (EB) reinforcement for existing structures. FRCMs are effective in increasing the shear strength of existing concrete members. When the fully-wrapped configuration is employed, the composite tensile failure could be attained. In this paper, an analytical approach previously proposed to describe FRCM U-wrapped RC beams is extended to fully-wrapped members. This approach provides an accurate description of the stress-transfer mechanism between the FRCM bridging the shear crack and the substrate, thus allowing for an in-depth study of the composite contribution to the member shear strength

    Influence of severe thermal preconditioning on the bond between carbon FRCM and masonry substrate: Effect of textile pre-impregnation

    Get PDF
    Fabric-reinforced cementitious matrix (FRCM) composites often include polymer-impregnated bundles to improve the exploitation of the textile mechanical properties. However, organic components may degrade when exposed to elevated temperature. In this paper, the bond behavior of a carbon FRCM applied to a masonry substrate and exposed to a thermal preconditioning up to 300 °C for 250 min is investigated. Tensile tests on the textile and flexural and compression tests on the mortar matrix, as well as single-lap direct shear tests of FRCM-masonry joints with bare and impregnated textiles, are performed. Results show that the polymeric impregnation improves the mechanical properties of the FRCM even after thermal preconditioning

    Density variation during respiration affects PET quantitation in the lung

    Get PDF
    PET quantitation depends on the accuracy of the CT-derived attenuation correction map. In the lung, respiration leads to both positional and density mismatches, causing PET quantitation errors at lung borders but also within the whole lung. The aim of this work is to determine the extent of the associated errors on the measured time activity curves (TACs) and the corresponding kinetic parameter estimates. 5 patients with idiopathic pulmonary fibrosis underwent dynamic 18 F-FDG PET and cine-CT imaging as part of an ongoing study. The cine-CT was amplitude gated using PCA techniques to produce end expiration (EXP), end inspiration (INS) and mid-breathing cycle (MID) gates representative of a short clinical CT acquisition. The ungated PET data were reconstructed with each CT gate and the TACs and kinetic parameters compared. Patient representative XCAT simulations with varying lung density, both with and without motion, were also produced to represent the above study allowing comparison of true to measured results. In all cases, the obtained PET TACs differed with each CT gate. For ROIs internal to the lung, the effect was dominated by changes in density, as opposed to motion. The errors in the TACs varied with time, providing evidence that errors due to attenuation mismatch depend on activity distribution. In the simulations, some kinetic parameters were over- and under-estimated by a factor of 2 in the INS and EXP gates respectively. For the patients, the maximum variation in kinetic parameters was 20%. Our results show that whole lung density changes during the respiratory cycle have a significant impact on PET quantitation. This is especially true of the kinetic parameter estimates as the extent of the error is dependent on tracer distribution which varies with time. It is therefore vital to use matched PET/CT for attenuation correction

    Bending and shear behavior of historic walls strengthened with composite reinforced mortar

    Get PDF
    Composite reinforced mortar (CRM) is a relatively new solution for the strengthening of existing masonry members that comprises fiber-reinforced polymer (FRP) grids reinforcing inorganic mortar overlays. CRMs were proven to be effective in strengthening masonry members against in- and out-of- plane loads. In this paper, a glass FRP-CRM is employed to strengthen 5-leaf historic masonry walls cut from an existing building located in Milan, Italy. The walls were strengthened and then subjected to three-point bending and diagonal compression tests. Results were compared with those of corresponding non-strengthened walls and showed the CRM effectiveness also in the case of thick masonry members

    Effect of cyclic load on the tensile behavior of a PBO FRCM composite

    Get PDF
    The use of externally bonded fiber-reinforced cementitious matrix (FRCM) composites represents a valid alternative to traditional techniques for the strengthening and retrofitting of existing reinforced concrete and masonry structures. FRCM composites are comprised of high strength textiles embedded within inorganic matrices and can be directly applied to the external surface of the existing structural element to increase its displacement and load capacity (i.e., axial, flexural, and shear strength). Thus, FRCM have a low invasiveness and a high strength-to-weight ratio. Recently, investigations on the bond behavior of FRCM composites showed that the presence of friction between the textile and matrix can induce damage to the fiber, which in turn determines possible reductions in the strengthened element capacity. This effect appears particularly critical in the case of cyclic and dynamic loads. In this paper, the cyclic behavior of a PBO FRCM composite is experimentally investigated using low-cycle tensile tests on composite specimens. Namely, FRCM rectangular coupons are subjected to clamping- and clevis-grip tensile tests. These tests provide important information on the effect of low-frequency dynamic loading on the composite tensile properties under different test configurations

    Detection of Lung Density Variations With Principal Component Analysis in PET

    Get PDF
    Respiratory motion generates lung volume changes during the breathing cycle. These affect the lung tissue density and therefore influence both the attenuation effect and the radiotracer concentration in PET imaging. To detect and correct for these effects could improve the quantitative accuracy of lung PET imaging. In this work we propose the use of Principal Component Analysis (PCA) to detect respiratory-induced lung density changes in the upper lung, where motion is expected to be minimal. The method is firstly applied to simulation data, specifically generated to simulate density changes only and no motion. Secondly, it is applied on the upper lung bed position of 15 lung cancer patients datasets. The total number of counts in time is also evaluated. The results show that the PCA signal is highly correlated to the respiratory trace obtained from an external device, and also to the variation of total counts in time. As the bed positions taken into account do not include moving organs, the results suggest that PCA is successful in detecting respiratory-induced density changes in the upper lung

    Notulae to the Italian alien vascular flora: 1

    Get PDF
    In this contribution, new data concerning the Italian distribution of alien vascular flora are presented. It includes new records, exclusions, and confirmations for Italy or for Italian administrative regions for taxa in the genera Agave, Arctotheca, Berberis, Bidens, Cardamine, Catalpa, Cordyline, Cotoneaster, Dichondra, Elaeagnus, Eragrostis, Impatiens, Iris, Koelreuteria, Lamiastrum, Lantana, Ligustrum, Limnophila, Lonicera, Lycianthes, Maclura, Mazus, Paspalum, Pelargonium, Phyllanthus, Pyracantha, Ruellia, Sorghum, Symphyotrichum, Triticum, Tulbaghia and Youngia

    CCR5 Haplotypes and Mother-to-Child HIV Transmission in Malawi

    Get PDF
    CCR5 and CCR2 gene polymorphisms (SNPs) have been associated with protection against HIV transmission in adults and with delayed progression to AIDS. The CCR5 Delta32 deletion and SNP -2459G are associated with reduced expression of the CCR5 protein.We investigated the association between infant CCR2/CCR5 diplotype and HIV mother to child transmission (MTCT) in Malawi. Blood samples from infants (n = 552) of HIV positive women who received nevirapine were genotyped using a post-PCR multiplex ligase detection reaction and haplotypes were identified based on 8 CCR2/CCR5 SNPs and the open reading frame 32 base pair deletion. Following verification of Hardy-Weinberg equilibrium, log linear regression was performed to examine the association between mutations and MTCT. Overall, protection against MTCT was weakly associated with two CCR5 SNPs, -2459G (Risk ratio [RR], 0.78; confidence interval [CI], 0.54-1.12), and the linked CCR5 -2135T (RR, 0.78; CI, 0.54-1.13). No child carried the CCR5 Delta32 SNP. Maternal Viral Load (MVL) was found to be an effect measure modifier. Among mothers with low MVL, statistically significant protection against MTCT was observed for -2459G (RR, 0.50; CI, 0.27-0.91), and -2135T (RR, 0.51; CI, 0.28-0.92). Statistically significant protection was not found at high MVL.Results from this study suggest that CCR5 SNPs -2459G and -2135T associated with reduced receptor expression protect against MTCT of HIV at low MVLs, whereas high MVLs may over-ride differences in coreceptor availability

    Notulae to the Italian native vascular flora: 3.

    Get PDF
    In this contribution new data concerning the distribution of native vascular flora in Italy are presented. It includes new records, exclusions, and confirmations to the Italian administrative regions for taxa in the genera Asplenium, Bolboschoenus, Botrychium, Chamaerops, Crocus, Galeopsis, Grafia, Helosciadium, Hieracium, Juniperus, Leucanthemum, Lolium, Medicago, Phalaris, Piptatherum, Potamogeton, Salicornia, Salvia, Seseli, Silene, Spiraea, Torilis and Vicia. Rhaponticoides calabrica is proposed as synonym novum of R. centaurium. Furthermore, new combinations in the genera Galatella and Lactuca are proposed
    • …
    corecore