39 research outputs found

    Dual channel self-oscillating optical magnetometer

    Full text link
    We report on a two-channel magnetometer based on nonlinear magneto-optical rotation in a Cs glass cell with buffer gas. The Cs atoms are optically pumped and probed by free running diode lasers tuned to the D2_2 line. A wide frequency modulation of the pump laser is used to produce both synchronous Zeeman optical pumping and hyperfine repumping. The magnetometer works in an unshielded environment and spurious signal from distant magnetic sources is rejected by means of differential measurement. In this regime the magnetometer simultaneously gives the magnetic field modulus and the field difference. Rejection of the common-mode noise allows for high-resolution magnetometry with a sensitivity of \pthz{2}. This sensitivity, in conjunction with long-term stability and a large bandwidth, makes possible to detect water proton magnetization and its free induction decay in a measurement volume of 5 cm3^3Comment: 13 pages, 9 figures. Improved version (v2). Accepted for publicatio

    Horizontal rotation signals detected by "G-Pisa" ring laser for the Mw=9.0, March 2011, Japan earthquake

    Get PDF
    We report the observation of the ground rotation induced by the Mw=9.0, 11th of March 2011, Japan earthquake. The rotation measurements have been conducted with a ring laser gyroscope operating in a vertical plane, thus detecting rotations around the horizontal axis. Comparison of ground rotations with vertical accelerations from a co-located force-balance accelerometer shows excellent ring laser coupling at periods longer than 100s. Under the plane wave assumption, we derive a theoretical relationship between horizontal rotation and vertical acceleration for Rayleigh waves. Due to the oblique mounting of the gyroscope with respect to the wave direction-of-arrival, apparent velocities derived from the acceleration / rotation rate ratio are expected to be always larger than, or equal to the true wave propagation velocity. This hypothesis is confirmed through comparison with fundamental-mode, Rayleigh wave phase velocities predicted for a standard Earth model.Comment: Accepted for publication in Journal of Seismolog

    GINGER: A feasibility study

    Get PDF
    GINGER (Gyroscopes IN General Relativity) is a proposal for an Earth-based experiment to measure the Lense-Thirring (LT) and de Sitter effects. GINGER is based on ring lasers, which are the most sensitive inertial sensors to measure the rotation rate of the Earth. We show that two ring lasers, one at maximum signal and the other horizontal, would be the simplest configuration able to retrieve the GR effects. Here, we discuss this configuration in detail showing that it would have the capability to test LT effect at 1%, provided the accuracy of the scale factor of the instrument at the level of 1 part in 1012 is reached. In principle, one single ring laser could do the test, but the combination of the two ring lasers gives the necessary redundancy and the possibility to verify that the systematics of the lasers are sufficiently small. The discussion can be generalised to seismology and geodesy and it is possible to say that signals 10-12 orders of magnitude below the Earth rotation rate can be studied; the proposed array can be seen as the basic element of multi-axial systems, and the generalisation to three dimensions is feasible adding one or two devices and monitoring the relative angles between different ring lasers. This simple array can be used to measure with very high precision the amplitude of angular rotation rate (the length of the day, LOD), its short term variations, and the angle between the angular rotation vector and the horizontal ring laser. Finally this experiment could be useful to probe gravity at fundamental level giving indications on violations of Einstein Equivalence Principle and Lorenz Invariance and possible chiral effects in the gravitational field

    Modified differentials and basic cohomology for Riemannian foliations

    Full text link
    We define a new version of the exterior derivative on the basic forms of a Riemannian foliation to obtain a new form of basic cohomology that satisfies Poincar\'e duality in the transversally orientable case. We use this twisted basic cohomology to show relationships between curvature, tautness, and vanishing of the basic Euler characteristic and basic signature.Comment: 20 pages, references added, minor corrections mad

    Metabolically stable bradykinin B2 receptor agonists enhance transvascular drug delivery into malignant brain tumors by increasing drug half-life

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The intravenous co-infusion of labradimil, a metabolically stable bradykinin B2 receptor agonist, has been shown to temporarily enhance the transvascular delivery of small chemotherapy drugs, such as carboplatin, across the blood-brain tumor barrier. It has been thought that the primary mechanism by which labradimil does so is by acting selectively on tumor microvasculature to increase the local transvascular flow rate across the blood-brain tumor barrier. This mechanism of action does not explain why, in the clinical setting, carboplatin dosing based on patient renal function over-estimates the carboplatin dose required for target carboplatin exposure. In this study we investigated the systemic actions of labradimil, as well as other bradykinin B2 receptor agonists with a range of metabolic stabilities, in context of the local actions of the respective B2 receptor agonists on the blood-brain tumor barrier of rodent malignant gliomas.</p> <p>Methods</p> <p>Using dynamic contrast-enhanced MRI, the pharmacokinetics of gadolinium-diethyltriaminepentaacetic acid (Gd-DTPA), a small MRI contrast agent, were imaged in rodents bearing orthotopic RG-2 malignant gliomas. Baseline blood and brain tumor tissue pharmacokinetics were imaged with the 1<sup>st </sup>bolus of Gd-DTPA over the first hour, and then re-imaged with a 2<sup>nd </sup>bolus of Gd-DTPA over the second hour, during which normal saline or a bradykinin B2 receptor agonist was infused intravenously for 15 minutes. Changes in mean arterial blood pressure were recorded. Imaging data was analyzed using both qualitative and quantitative methods.</p> <p>Results</p> <p>The decrease in systemic blood pressure correlated with the known metabolic stability of the bradykinin B2 receptor agonist infused. Metabolically stable bradykinin B2 agonists, methionine-lysine-bradykinin and labradimil, had differential effects on the transvascular flow rate of Gd-DTPA across the blood-brain tumor barrier. Both methionine-lysine-bradykinin and labradimil increased the blood half-life of Gd-DTPA sufficiently enough to increase significantly the tumor tissue Gd-DTPA area under the time-concentration curve.</p> <p>Conclusion</p> <p>Metabolically stable bradykinin B2 receptor agonists, methionine-lysine-bradykinin and labradimil, enhance the transvascular delivery of small chemotherapy drugs across the BBTB of malignant gliomas by increasing the blood half-life of the co-infused drug. The selectivity of the increase in drug delivery into the malignant glioma tissue, but not into normal brain tissue or skeletal muscle tissue, is due to the inherent porous nature of the BBTB of malignant glioma microvasculature.</p

    All optical sensor for automated magnetometry based on coherent population trapping

    No full text
    An automated magnetometer suitable for long lasting measurement under stable and controllable experimental conditions has been implemented. The device is based on coherent population trapping (CPT) produced by a multifrequency excitation. CPT resonance is observed when a frequency comb, generated by diode laser current modulation, excites Cs atoms confined in a /42.521 cm3, 2 Torr N2 buffered cell. A fully optical sensor is connected through an optical fiber to the laser head allowing for truly remote sensing and minimization of the field perturbation. A detailed analysis of the CPT resonance parameters as a function of the optical detuning has been made in order to get high sensitivity measurements. The magnetic field monitoring performances and the best sensitivity obtained in a balanced differential configuration of the sensor are presented

    >

    No full text
    corecore