75 research outputs found

    Review on the start-up experiences of continuous fermentative hydrogen producing bioreactors

    Get PDF
    The start-up of continuous biohydrogen fermentations is a complex procedure and a key to acceptable hydrogen production performance and successful long-term operation. In this review article, the experiences gained and lessons learned from relevant literature studies dealing with various aspects of H 2 producing bioreactor start-up are comprehensively surveyed. Firstly, the importance of H2-forming biosystem start-up including its main steps is outlined. Afterwards, the role of main influencing factors and methods (e.g. strain selection, seed pretreatment and inocula stimulation, switch-over time, bioreactor design, operating conditions) in avoiding the deterioration of starting a reactor is analyzed and presented in detail. Finally, the so far suggested applicable start-up strategies and the corresponding findings are critically discussed pointing out the advantages and disadvantages of each strategy. © 2014 Elsevier Ltd

    Fermentative hydrogen production in anaerobic membrane bioreactors: A review

    Get PDF
    Reactor design considerations are crucial aspects of dark fermentative hydrogen production. During the last decades, many types of reactors have been developed and used in order to drive biohydrogen technology towards practicality and economical-feasibility. In general, the ultimate aim is to improve the key features of the process, namely the H2 yields and generation rates. Among the various configurations, the traditional, completely stirred tank reactors (CSTRs) are still the most routinely employed ones. However, due to their limitations, there is a progress to develop more reliable alternatives. One of the research directions points to systems combining membranes, which are called as anaerobic membrane bioreactors (AnMBRs). The aim of this paper is to summarize and highlight the recent biohydrogen related work done on AnMBRs and moreover to evaluate their performances and potentials in comparison with their conventional CSTR counterparts. © 2014 Elsevier Ltd

    Fermentative hydrogen production by conventionally and unconventionally heat pretreated seed cultures: A comparative assessment

    Get PDF
    In this study, the effects of pretreatment temperature and time during conventional and unconventional, microwave-assisted heat shock on the hydrogen producing capability of anaerobic seed sludge from soluble starch was focused. It was found that the different heat transfer techniques resulted in seed cultures with comparable hydrogen production potentials, with the highest obtainable values of approximately 0.9 L H2/L-d. A comprehensive, statistical analysis revealed that both treatment temperature and time could be designated as significant process variables, however, in distinguishable extents for the two alternative methods. The results indicated that microwave-based sludge pretreatment needed remarkably shorter curing times (2 min) to eliminate H2-consuming, methanogenic activity in comparison to the conventional heat shock method (30 min). It was also demonstrated that microwave irradiation increased the soluble organic matter content in the seed sludge. © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved

    Review on the start-up experiences of continuous fermentative hydrogen producing bioreactors

    Get PDF
    a b s t r a c t The start-up of continuous biohydrogen fermentations is a complex procedure and a key to acceptable hydrogen production performance and successful long-term operation. In this review article, the experiences gained and lessons learned from relevant literature studies dealing with various aspects of H 2 producing bioreactor start-up are comprehensively surveyed. Firstly, the importance of H 2 -forming biosystem start-up including its main steps is outlined. Afterwards, the role of main influencing factors and methods (e.g. strain selection, seed pretreatment and inocula stimulation, switch-over time, bioreactor design, operating conditions) in avoiding the deterioration of starting a reactor is analyzed and presented in detail. Finally, the so far suggested applicable start-up strategies and the corresponding findings are critically discussed pointing out the advantages and disadvantages of each strategy

    Potassium acetate solution as a promising option to osmotic distillation for sour cherry (Prunus cerasus L.) juice concentration

    Get PDF
    Different osmotic agents (OA), such as potassium acetate (CH3COOK), potassium carbonate (K2CO3) and ammonium nitrate (NH4NO3), have been examined as alternatives to the traditionally used calcium chloride (CaCl2) for osmotic distillation concentrating of clarified and pre-concentrated sour cherry (Prunus cerasus L.) juice. Comparison of the process performances based on the permeate fluxes has been carried out. Regarding the permeate flux results, simplified estimation of the overall mass transfer coefficient of the most effective osmotic agent and the reference (CaCl2) solution has been also performed. Furthermore, analytical methods such as total antioxidant activity (TAA) and total polyphenolic content (TPC) using spectrophotometric assays have been also carried out to evaluate the effect of the osmotic distillation on the valuable compounds content of concentrated sour cherry juice. CH3COOK was found to be the most effective, resulted more than 25% higher permeate flux during the sour cherry juice concentration. K2CO3 and NH4NO3 were less effective. The simplified mass transfer estimation showed that the CH3COOK is more effective only at near saturated concentrations compared to the CaCl2. Regarding the TAA and TPC contents, a significant loss was found in case of all OAs during the concentration procedures

    Adhesion of alumina surfaces through confined water layers containing various molecules

    Get PDF
    When two surfaces confine water layers between them at the nanoscale, the behaviour of these confined water molecules can deviate significantly from the behaviour of bulk water and it could reflect on the adhesion of such surfaces. Thus, the aim of this study is to assess the role of confined water layers on the adhesion of hydrophilic surfaces and how sensitive this adhesion is to the presence of contaminants. Our methodology used under water AFM force measurements with an alumina sputtered sphere-tipped cantilever and a flat alumina single crystal, then added fractions of ethanol, dimethylformamide, formamide, trimethylamine, and trehalose to water, as contaminants. Such solutions were designed to illuminate the influences of dielectric constant, molecular size, refractive index and number of hydrogen bonds from donors and acceptors of solutes to water. Apart from very dilute solutions of dimethylformamide, all solutions decreased the ability of confined water to give adhesion of the alumina surfaces. The predicted theoretical contribution of van der Waals and electrostatic forces was not observed when the contaminants distorted the way water organizes itself in confinement. The conclusion was that adhesion was sensitive mostly to hydrogen bonding network within water layers confined by the hydrophilic alumina surfaces

    Endokrinológia

    No full text
    corecore