63 research outputs found

    Palaeomagnetic time and space constraints of the Early Cretaceous Rhenodanubian Flysch zone (Eastern Alps)

    Get PDF
    © The Authors 2017. The Rhenodanubian Flysch zone (RDF) is a Lower Cretaceous-lower Palaeocene turbidite succession extending for ~500 km from the Danube at Vienna to the Rhine Valley (Eastern Alps). It consists of calcareous and siliciclastic turbidite systems deposited in a trench abyssal plain. The age of deposition has been estimated through micropalaeontologic dating. However, palaeomagnetic studies constraining the age and the palaeolatitude of deposition of the RDF are still missing. Here, we present palaeomagnetic data from the Early Cretaceous Tristel and Rehbreingraben Formations of the RDF from two localities in the Bavarian Alps (Rehbrein Creek and Lainbach Valley, southern Germany), and from the stratigraphic equivalent of the Falknis Nappe (Liechtenstein). The quality of the palaeomagnetic signal has been assessed by either fold test (FT) or reversal test (RT). Sediments from the Falknis Nappe are characterized by a pervasive syntectonic magnetic overprint as tested by negative FT, and are thus excluded from the study. The sediments of the Rehbreingraben Formation at Rehbrein Creek, with positive RT, straddle magnetic polarity Chron M0r and the younger M'-1r' reverse event, with an age of ~127-123 Ma (late Barremian-early Aptian). At Lainbach Valley, no polarity reversals have been observed, but a positive FT gives confidence on the reliability of the data. The primary palaeomagnetic directions, after correction for inclination shallowing, allow to precisely constrain the depositional palaeolatitude of the Tristel and Rehbreingraben Formations around ~28°N. In a palaeogeographic reconstruction of the Alpine Tethys at the Barremian/Aptian boundary, the RDF is located on the western margin of the Briançonnais terrain, which was separated from the European continent by the narrow Valais Ocean

    Paleomagnetic data from Late Paleozoic dykes of Sardinia: evidence for block rotations and implications for the intra-Pangea megashear system

    Get PDF
    Paleomagnetic studies of dyke swarms from the Variscan belt of Europe can be used to reconstruct internal postorogenic rotations within the fold belt. Here we present paleomagnetic data from 13 late Variscan dykes from Sardinia ranging in age from 298\ub15 to 270\ub110 Ma. The dykes can be grouped on the basis of their different directions in strike in a northern, a central-eastern and a south-eastern province. Paleomagnetic component directions have been obtained using thermal and alternating field demagnetization techniques, which give reproducible results. The paleomagnetic mean directions differ significantly between northern Sardinia and south-eastern and central-eastern Sardinia, the latter two regions yielding statistically similar paleomagnetic mean directions. These results indicate that Sardinia fragmented into two, arguably three, crustal blocks after emplacement of the dykes, which experienced differential relative rotations, as is also indicated by the differences in overall strike directions. The determination of timing, sense, and magnitude of these rotations has major implications for the reconstruction of the geodynamic evolution of the region in post-Carboniferous times. We argue that the observed block rotations occurred during the Permian as the result of post-Variscan intra-Pangea mobility possibly related to the transformation of an Early Permian Pangea B to a Late Permian Pangea A. \ua9 2014. American Geophysical Union. All Rights Reserved

    Integrated stratigraphy and 40Ar/39Ar chronology of the Early to Middle Miocene Upper Freshwater Molasse in eastern Bavaria (Germany)

    Get PDF
    A detailed integrated stratigraphic study was carried out on middle Miocene fluvial successions of the Upper Freshwater Molasse (OSM) from the North Alpine Foreland Basin, in eastern Bavaria, Germany. The biostratigraphic investigations yielded six new localities thereby refining the OSM biostratigraphy for units C to E (sensu; Heissig, Actes du Congres BiochroM'1997) and further improving biostratigraphic correlations between the different sections throughout eastern Bavaria. Radioisotopic ages of 14.55 ± 0.19 and 14.88 ± 0.11 Ma have been obtained for glass shards from the main bentonite horizon and the Ries impactite: two important stratigraphic marker beds used for confirming our magnetostratigraphic calibration to the Astronomical Tuned Neogene Time Scale (ATNTS04; Lourens et al. in Geologic Time Scale 2004, Cambridge University Press, 2004). Paleomagnetic analysis was performed using alternating field (AF) and thermal (TH) demagnetization methods. The AF method revealed both normal and reverse polarities but proofs to yield unreliable ChRM directions for the Puttenhausen section. Using the biostratigraphic information and radioisotopic ages, the magnetostratigraphic records of the different sections are tentatively correlated to the Astronomical Tuned Neogene Time Scale (ATNTS04; Lourens et al. in Geologic Time Scale 2004, Cambridge University Press, 2004). This correlation implies that the main bentonite horizon coincides to chron C5ADn, which is corroborated by its radioisotopic age of 14.55 Ma, whereas the new fossil locality Furth 460, belonging to OSM unit E, probably correlates to chron C5Bn.1r. The latter correlation agrees well with the Swiss Molasse locality Frohberg. Correlations of the older sections are not straightforward. The Brock horizon, which comprises limestone ejecta from the Ries impact, possibly correlates to C5ADr (14.581 ± 14.784 Ma), implying that, although within error, the radioisotopic age of 14.88 ± 0.11 Ma is somewhat too old. The fossil localities in Puttenhausen, belonging to the older part of OSM unit C, probably coincide with chron C5Cn.2n or older, which is older than the correlations established for the Swiss Molasse. © Springer-Verlag 2007

    A paleomagnetic study of Permian and Triassic rocks from the Toulon-Cuers Basin, SE France: Evidence for intra-Pangea block rotations in the Permian

    Get PDF
    The identification of a massive shear zone separating Gondwana from Laurasia during late Palaeozoic times is one of the prerequisites for the controversial Pangea B to A transition. Here we present new paleomagnetic data from Permian and Triassic sediments and volcanic rocks from the Toulon-Cuers basin, SE France, likely to be situated within this intra-Pangea shear zone. A total of 150 samples from 14 sites were collected in the field; 108 samples yielded reliable paleomagnetic component directions based on stepwise thermal demagnetization up to maximum temperatures of 690C. After removal of an initial viscous magnetic component from room temperature up to 200C, a second component of reverse polarity, oriented to the south-and-up, was identified in almost all samples of Permian age. The Triassic samples behave similarly, with the notable difference that here, two polarities of magnetization are present. Positive field tests suggest the primary character of this characteristic magnetization. The latitudes of the resulting Early to Mid Permian paleopoles agree well with the corresponding segment of the apparent polar wander path (APWP) for Europe, whereas the longitudes are strung out along a small circle segment, indicating relative rotations between the sampled regions and stable Europe. The Triassic poles, instead, plot close to the Triassic segment of the European APWP and provide an upper time limit for the observed rotations. These results suggest a wrench faulting event associated with intra-Pangea crustal instability and transformation during the Permian

    A multistratigraphic approach to pinpoint the Permian-Triassic boundary in continental depositsThe Zechstein–Lower Buntsandstein transition in Germany

    Get PDF
    © 2017 Elsevier B.V.The Central European Basin is very suitable for high-resolution multistratigraphy of Late Permian to Early Triassic continental deposits. Here the well exposed continuous transition of the lithostratigraphic Zechstein and Buntsandstein Groups of Central Germany was studied for isotope-chemostratigraphy (δ13Corg, δ13Ccarb, δ18Ocarb), major and trace element geochemistry, magnetostratigraphy, palynology, and conchostracan biostratigraphy. The analysed material was obtained from both classical key sections (abandoned Nelben clay pit, Caaschwitz quarries, Thale railway cut, abandoned Heinebach clay pit) and a recent drill core section (Caaschwitz 6/2012) spanning the Permian-Triassic boundary. The Zechstein–Buntsandstein transition of Central Germany consists of a complex sedimentary facies comprising sabkha, playa lake, aeolian, and fluvial deposits of predominantly red-coloured siliciclastics and intercalations of lacustrine oolitic limestones. The new data on δ13Corg range from − 28.7 to − 21.7 ‰ showing multiple excursions. Most prominent negative shifts correlate with intercalations of oolites and grey-coloured clayey siltstones, while higher δ13Corg values correspond to an onset of palaeosol overprint. The δ13Ccarb values range from − 9.7 to − 1.3 ‰ with largest variations recorded in dolomitic nodules from the Zechstein Group. In contrast to sedimentary facies shifts across the Zechstein-Buntsandstein boundary, major element values used as a proxy (CIA, CIA*, CIA-K) for weathering conditions indicate climatic stability. Trace element data used for a geochemical characterization of the Late Permian to Early Triassic transition in Central Germany indicate a decrease in Rb contents at the Zechstein-Buntsandstein boundary. New palynological data obtained from the Caaschwitz quarry section reveal occurrences of Late Permian palynomorphs in the Lower Fulda Formation, while Early Triassic elements were recorded in the upper part of the Upper Fulda Formation. The present study confirms an onset of a normal-polarized magnetozone in the Upper Fulda Formation of the Caaschwitz quarry section supporting an interregional correlation of this crucial stratigraphic interval with the normal magnetic polarity of the basal Early Triassic known from marine sections in other regions. Based on a synthesis of the multistratigraphic data, the Permian-Triassic boundary is proposed to be placed in the lower part of the Upper Fulda Formation, which is biostratigraphically confirmed by the first occurrence date of the Early Triassic Euestheria gutta-Palaeolimnadiopsis vilujensis conchostracan fauna. Rare records of conchostracans reported from the siliciclastic deposits of the lower to middle Zechstein Group may point to its potential for further biostratigraphic subdivision of the Late Permian continental deposits

    Paleomagnetic Investigations in Northeast Greenland and New Data from Devonian(?) and Late Carboniterous Rocks

    Get PDF

    Detailed Jaramillo field reversals recorded in lake sediments from Armenia – Lower mantle influence on the magnetic field revisited

    No full text
    While it is well established that the Earth's magnetic field is generated by a self sustaining dynamo that reversed its polarity at irregular intervals in the geological past, the very mechanisms causing field reversals remain obscure. Paleomagnetic reconstructions of polarity transitions have been essential for physically constraining the underlying mechanisms in terms of time scale, but thus far remain ambiguous with regard to the transitional field geometry. Here we present new paleomagnetic records from a rapidly deposited lacustrine sediment sequence with extraordinarily stable paleomagnetic signals, which has captured in unprecedented detail the bottom (reverse to normal: R–N) and top (normal to reverse: N–R) transitions of the Jaramillo subchron (at 1.072 Ma and at 0.988 Ma). The obtained virtual geomagnetic pole (VGP) path indicates an oscillatory transitional field behavior with four abrupt transequatorial precursory jumps across the Pacific. The distribution of VGP positions indicates regions of preferred occurrence. Our results are in agreement with previously proposed bands of transitional VGP occurrence over the Americas and Australia/northwest Pacific. Additionally, our VGP positions seem to avoid large low shear velocity provinces (LLSVPs) above the core mantle boundary (CMB). Thus, our data supports the idea that the transitional field geometry is controlled by heat flux heterogeneities at the CMB linked to LLSVPs
    • …
    corecore