18,503 research outputs found

    On the determination of the earthquake slip distribution via linear programming techniques

    Get PDF
    The description that one can have of the seismic source is the mani- festation of an imagined model, obviously outlined from Physic Theories and supported by mathematical methods. In that context, the modelling of earthquake rupture consists in finding values of the parameters of the selected physics-mathematical model, through which it becomes possible to reproduce numerically the records of earthquake effects on the Earths surface. We present and test a Linear Programming (LP) inversion in dual form, for reconstructing the kinematics of the rupture of large earthquakes through space-time seismic slip distribution on finite faults planes

    On orthogonal expansions of the space of vector functions which are square-summable over a given domain and the vector analysis operators

    Get PDF
    The Hilbert space L2(omega) of vector functions is studied. A breakdown of L2(omega) into orthogonal subspaces is discussed and the properties of the operators for projection onto these subspaces are investigated from the standpoint of preserving the differential properties of the vectors being projected. Finally, the properties of the operators are examined

    Quasi-exactly solvable problems and the dual (q-)Hahn polynomials

    Full text link
    A second-order differential (q-difference) eigenvalue equation is constructed whose solutions are generating functions of the dual (q-)Hahn polynomials. The fact is noticed that these generating functions are reduced to the (little q-)Jacobi polynomials, and implications of this for quasi-exactly solvable problems are studied. A connection with the Azbel-Hofstadter problem is indicated.Comment: 15 pages, LaTex; final version, presentation improved, title changed, to appear in J.Math.Phy

    An Algorithm to Construct Groebner Bases for Solving Integration by Parts Relations

    Full text link
    This paper is a detailed description of an algorithm based on a generalized Buchberger algorithm for constructing Groebner-type bases associated with polynomials of shift operators. The algorithm is used for calculating Feynman integrals and has proven itself efficient in several complicated cases.Comment: LaTeX, 9 page

    Extended Seismic Source Characterisation using Linear Programming Inversion in a Dual Formulation

    Get PDF
    A linear programming (LP) inversion method in a dual formulation was applied to reconstruct the kinematics of finite seismic ruptures. In a general setting, this approach can yield results from several data sets: strong ground motion, teleseismic waveforms or/and geodesic data (static deformation). The dual formulation involves the transformation of a normal solution space into an equivalent but reduced space: the dual space. The practical result of this transformation is a simpler inversion problem that is therefore faster to resolve, more stable and more robust. The developed algorithm includes a forward problem that calculates Green’s functions using a finite differences method with a 3D structure model. To evaluate the performance of this algorithm, we applied it to the reconstitution of a realistic slip distribution model from a data set synthesised using this model, i.e., the solution of the forward problem. Several other standard inversion approaches were applied to the same synthetic data for comparison
    corecore