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2 University of Évora, Évora, Portugal; bafcc@uevora.pt

3 University of Minho, Braga, Portugal; smirnov@math.uminho.pt

The description that one can have of the seismic source is the mani-
festation of an imagined model, obviously outlined from Physic Theories
and supported by mathematical methods. In that context, the modelling
of earthquake rupture consists in finding values of the parameters of the
selected physics-mathematical model, through which it becomes possible
to reproduce numerically the records of earthquake effects on the Earths
surface. Actually, these effects are the elastic records at near field source
and at far field source, and inelastic deformations recorded by geodetic
techniques. The detail and accuracy level, with which the characteristic
parameters for large earthquakes are computed, depends on the combina-
tion of two factors - the applied methods and the used data.

Under the hypothesis of constant slip direction and constant rise time
of individual source time function, the problem of complete seismic slip
time history and distribution reconstruction reduces to the solution of a
system of linear equations. It is well-known that this inverse problem
is ill-posed [6]. The usual regularization techniques [8] can hardly be
applied in this case because of a very high dimension of this problem (see,
e.g., [3]). The problem can be overcome by introducing some additional
regularizing constraints. Some additional physical hypotheses, like no-
backslip constraint, result in condition of non-negativeness of solutions to
the system of linear equations.

The positivity that prohibits negative seismic moment values, is a
constraint naturally assumed when used the Non Negative Least Squares
algorithm (NNLS) [5] to inverts seismic waveforms to slip distribution
(e.g., [7]).

We present and test a Linear Programming (LP) inversion in dual
form, for reconstructing the kinematics of the rupture of large earthquakes
through space-time seismic slip distribution on finite faults planes. The
proposed method can be considered as a continuation of the work started
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in [2]. The proposed algorithm uses strong ground motion waveforms, but
it can also used with other types of data as teleseismic waveforms as well
as with geodesic data (static deformation). We test the method with data
obtained by application to a synthetic model of rupture. To compare it,
we rehearsed reconstructions with same data, but made by other strongly
used algorithms. Green functions (see, e.g., [1]) were calculated by a finite
differences method applied to a 3D structure model [4].

The hypothesis of constant slip direction in general is not verified
and the ”real” seismic slip time history and distribution reconstruction
becomes an hard nonlinear problem. In this work we suggest an algorithm
for seismic slip time history and distribution reconstruction allowing to
solve the problem in its general setting. The solution of an auxiliary linear
programming problem is an essential part of the developed method. To
test the algorithm we use a synthetic displacement function for the fault
model and perform the inversion.

The slip determination problem can be formalized in the frame of
mathematical programming in the following way

〈c, x〉 → min,
A(λ)x = b,

x ≥ 0.
(1)

Here x is the unknown vector of amplitudes and residuals (see [2]) and
the vector λ represents the unknown rakes. Note that the displacement
field models can be different but the mathematical formalization is always
the same. If we fix the rake vector λ, problem (1) becomes a linear
programming problem. This observation is the key to an effective solution
of problem (1). It turns out that the gradient of the minimized functional
〈c, x〉 with respect to λ can be calculated in terms of the solution to the
linear programming problem dual to (1).

The following algorithm describes the process.

Algorithm:

Given λ0, ∆ > 0, and ǫ > 0.
for k = 0, 1, 2, . . .

Step 1. Solve linear programming problem (1) with λ = λk

and obtain xk.
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Step 2. Obtain search direction λ̄k and a step δk > 0.
if δk‖λk‖ < ǫ break
else

Step 3. Set λk+1 = λk + δkλ̄k.
end (for)

The second step of the algorithm is not trivial. The derivative is
calculated using the dual linear programming problem. The latter has a
very specific form:

〈c, x〉 → min,
Bx ≤ 0,
−1 ≤ (x)i ≤ 1, i = 1, n,

(2)

where B is an (m× n)-matrix with m < n. This special structure of the
dual problem allows one to effectively find an admissible vertex.
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