5,844 research outputs found

    Electron-phonon bound states in graphene in a perpendicular magnetic field

    Full text link
    The spectrum of electron-phonon complexes in a monolayer graphene is investigated in the presence of a perpendicular quantizing magnetic field. Despite the small electron-phonon coupling, usual perturbation theory is inapplicable for calculation of the scattering amplitude near the threshold of the optical phonon emission. Our findings beyond perturbation theory show that the true spectrum near the phonon emission threshold is completely governed by new branches, corresponding to bound states of an electron and an optical phonon with a binding energy of the order of αω0\alpha \omega_{0} where α\alpha is the electron-phonon coupling and ω0\omega_{0} the phonon energy.Comment: To be published in Phys. Rev. Lett., 5 pages, 3 figures, 1 tabl

    Acoustoelectric current and pumping in a ballistic quantum point contact

    Full text link
    The acoustoelectric current induced by a surface acoustic wave (SAW) in a ballistic quantum point contact is considered using a quantum approach. We find that the current is of the "pumping" type and is not related to drag, i.e. to the momentum transfer from the wave to the electron gas. At gate voltages corresponding to the plateaus of the quantized conductance the current is small. It is peaked at the conductance step voltages. The peak current oscillates and decays with increasing SAW wavenumber for short wavelengths. These results contradict previous calculations, based on the classical Boltzmann equation.Comment: 4 pages, 1 figur

    Quantum dot dephasing by edge states

    Full text link
    We calculate the dephasing rate of an electron state in a pinched quantum dot, due to Coulomb interactions between the electron in the dot and electrons in a nearby voltage biased ballistic nanostructure. The dephasing is caused by nonequilibrium time fluctuations of the electron density in the nanostructure, which create random electric fields in the dot. As a result, the electron level in the dot fluctuates in time, and the coherent part of the resonant transmission through the dot is suppressed

    Effect of Interactions on the Admittance of Ballistic Wires

    Full text link
    A self-consistent theory of the admittance of a perfect ballistic, locally charge neutral wire is proposed. Compared to a non-interacting theory, screening effects drastically change the frequency behavior of the conductance. In the single-channel case the frequency dependence of the admittance is monotonic, while for two or more channels collective interchannel excitations lead to resonant structures in the admittance. The imaginary part of the admittance is typically positive, but can become negative near resonances.Comment: Presentation considerably modified; the results are unchanged. 4 pages, 2 figures .eps-format include

    Calorimetry of gamma-ray bursts: echos in gravitational waves

    Get PDF
    Black holes surrounded by a disk or torus may drive the enigmatic cosmological gamma-ray bursts (GRBs). Equivalence in poloidal topology to pulsar magnetospheres shows a high incidence of the black hole-luminosity LHL_H into the surrounding magnetized matter. We argue that this emission is re-radiated into gravitational waves at LGWLH/3L_{GW}\simeq L_H/3 in frequencies of order 1kHz, winds and, potentially, MeV neutrinos. The total energy budget and input to the GRB from baryon poor jets are expected to be standard in this scenario, consistent with recent analysis of afterglow data. Collimation of these outflows by baryon rich disk or torus winds may account for the observed spread in opening angles up to about 35o35^o. This model may be tested by future LIGO/VIRGO observations.Comment: To appear in ApJ

    Induced scattering of short radio pulses

    Full text link
    Effect of the induced Compton and Raman scattering on short, bright radio pulses is investigated. It is shown that when a single pulse propagates through the scattering medium, the effective optical depth is determined by the duration of the pulse but not by the scale of the medium. The induced scattering could hinder propagation of the radio pulse only if close enough to the source a dense enough plasma is presented. The induced scattering within the relativistically moving source places lower limits on the Lorentz factor of the source. The results are applied to the recently discovered short extragalactic radio pulse.Comment: submitted to Ap

    Mathematical Apparatus of the Theory of Angular Momentum

    Get PDF

    Acoustoelectric effect in a finite-length ballistic quantum channel

    Full text link
    The dc current induced by a coherent surface acoustic wave (SAW) of wave vector q in a ballistic channel of length L is calculated. The current contains two contributions, even and odd in q. The even current exists only in a asymmetric channel, when the electron reflection coefficients r_1 and r_2 at both channel ends are different. The direction of the even current does not depend on the direction of the SAW propagation, but is reversed upon interchanging r_1 and r_2. The direction of the odd current is correlated with the direction of the SAW propagation, but is insensitive to the interchange of r_1 and r_2. It is shown that both contributions to the current are non zero only when the electron reflection coefficients at the channel ends are energy dependent. The current exhibits geometric oscillations as function of qL. These oscillations are the hallmark of the coherence of the SAW and are completely washed out when the current is induced by a flux of non-coherent phonons. The results are compared with those obtained previously by different methods and under different assumptions.Comment: 7 pages, 2 figure

    Classical properties of low-dimensional conductors: Giant capacitance and non-Ohmic potential drop

    Full text link
    Electrical field arising around an inhomogeneous conductor when an electrical current passes through it is not screened, as distinct from 3D conductors, in low-dimensional conductors. As a result, the electrical field depends on the global distribution of the conductivity sigma(x) rather than on the local value of it, inhomogeneities of sigma(x) produce giant capacitances C(omega) that show frequency dependence at relatively low omega, and electrical fields develop in vast regions around the inhomogeneities of sigma(x). A theory of these phenomena is presented for 2D conductors.Comment: 5 pages, two-column REVTeX, to be published in Physical Review Letter

    Anomalous Thermal Transport in Quantum Wires

    Full text link
    We study thermal transport in a one-dimensional quantum wire, connected to reservoirs. Despite of the absence of electron backscattering, interactions in the wire strongly influence thermal transport. Electrons propagate with unitary transmission through the wire and electric conductance is not affected. Energy, however, is carried by bosonic excitations (plasmons) which suffer from scattering even on scales much larger than the Fermi wavelength. If the electron density varies randomly, plasmons are localized and {\em charge-energy separation} occurs. We also discuss the effect of plasmon-plasmon interaction using Levinson's theory of nonlocal heat transport.Comment: replaced with published versio
    corecore