250 research outputs found

    The dynamics of quasi-isometric foliations

    Full text link
    If the stable, center, and unstable foliations of a partially hyperbolic system are quasi-isometric, the system has Global Product Structure. This result also applies to Anosov systems and to other invariant splittings. If a partially hyperbolic system on a manifold with abelian fundamental group has quasi-isometric stable and unstable foliations, the center foliation is without holonomy. If, further, the system has Global Product Structure, then all center leaves are homeomorphic.Comment: 18 pages, 1 figur

    Effects of experimental hypervitaminosis D3 on renal effects of intragastral and parenteral injection of zinc chloride

    Get PDF
    The objective was to study the effect of hypercalcemia on the changes of renal function due to intragastric and subcutaneous administration of zinc chloride. Hypercalcemia was modeled in rats by introducing them an aqueous solution of vitamin D3 at a dose of 3000 МЕ (0,2 ml)/100 g for 30 days. Zinc chloride was administered intragastrally and subcutaneously at a dose of 20 mg/kg daily for 30 days. The study found that hypercalcemia leaded to more severe manifestations of toxic nephropathy in rats with intragastric administration of zinc chloride and in rats with subcutaneous administration of metal, however, it leaded to lower damaging effect on the kidneys

    Fractal Weyl law for quantum fractal eigenstates

    Full text link
    The properties of the resonant Gamow states are studied numerically in the semiclassical limit for the quantum Chirikov standard map with absorption. It is shown that the number of such states is described by the fractal Weyl law and their Husimi distributions closely follow the strange repeller set formed by classical orbits nonescaping in future times. For large matrices the distribution of escape rates converges to a fixed shape profile characterized by a spectral gap related to the classical escape rate.Comment: 4 pages, 5 figs, minor modifications, research at http://www.quantware.ups-tlse.fr

    Distributed Generation and Resilience in Power Grids

    Full text link
    We study the effects of the allocation of distributed generation on the resilience of power grids. We find that an unconstrained allocation and growth of the distributed generation can drive a power grid beyond its design parameters. In order to overcome such a problem, we propose a topological algorithm derived from the field of Complex Networks to allocate distributed generation sources in an existing power grid.Comment: proceedings of Critis 2012 http://critis12.hig.no

    Classical and quantum ergodicity on orbifolds

    Full text link
    We extend to orbifolds classical results on quantum ergodicity due to Shnirelman, Colin de Verdi\`ere and Zelditch, proving that, for any positive, first-order self-adjoint elliptic pseudodifferential operator P on a compact orbifold X with positive principal symbol p, ergodicity of the Hamiltonian flow of p implies quantum ergodicity for the operator P. We also prove ergodicity of the geodesic flow on a compact Riemannian orbifold of negative sectional curvature.Comment: 14 page

    Multifractal properties of return time statistics

    Full text link
    Fluctuations in the return time statistics of a dynamical system can be described by a new spectrum of dimensions. Comparison with the usual multifractal analysis of measures is presented, and difference between the two corresponding sets of dimensions is established. Theoretical analysis and numerical examples of dynamical systems in the class of Iterated Functions are presented.Comment: 4 pages, 3 figure

    Quantum cat maps with spin 1/2

    Full text link
    We derive a semiclassical trace formula for quantized chaotic transformations of the torus coupled to a two-spinor precessing in a magnetic field. The trace formula is applied to semiclassical correlation densities of the quantum map, which, according to the conjecture of Bohigas, Giannoni and Schmit, are expected to converge to those of the circular symplectic ensemble (CSE) of random matrices. In particular, we show that the diagonal approximation of the spectral form factor for small arguments agrees with the CSE prediction. The results are confirmed by numerical investigations.Comment: 26 pages, 3 figure

    Large deviations for non-uniformly expanding maps

    Full text link
    We obtain large deviation results for non-uniformly expanding maps with non-flat singularities or criticalities and for partially hyperbolic non-uniformly expanding attracting sets. That is, given a continuous function we consider its space average with respect to a physical measure and compare this with the time averages along orbits of the map, showing that the Lebesgue measure of the set of points whose time averages stay away from the space average decays to zero exponentially fast with the number of iterates involved. As easy by-products we deduce escape rates from subsets of the basins of physical measures for these types of maps. The rates of decay are naturally related to the metric entropy and pressure function of the system with respect to a family of equilibrium states. The corrections added to the published version of this text appear in bold; see last section for a list of changesComment: 36 pages, 1 figure. After many PhD students and colleagues having pointed several errors in the statements and proofs, this is a correction to published article answering those comments. List of main changes in a new last sectio

    Fast-slow partially hyperbolic systems versus Freidlin-Wentzell random systems

    Full text link
    We consider a simple class of fast-slow partially hyperbolic dynamical systems and show that the (properly rescaled) behaviour of the slow variable is very close to a Friedlin--Wentzell type random system for times that are rather long, but much shorter than the metastability scale. Also, we show the possibility of a "sink" with all the Lyapunov exponents positive, a phenomenon that turns out to be related to the lack of absolutely continuity of the central foliation.Comment: To appear in Journal of Statistical Physic

    Theories for influencer identification in complex networks

    Full text link
    In social and biological systems, the structural heterogeneity of interaction networks gives rise to the emergence of a small set of influential nodes, or influencers, in a series of dynamical processes. Although much smaller than the entire network, these influencers were observed to be able to shape the collective dynamics of large populations in different contexts. As such, the successful identification of influencers should have profound implications in various real-world spreading dynamics such as viral marketing, epidemic outbreaks and cascading failure. In this chapter, we first summarize the centrality-based approach in finding single influencers in complex networks, and then discuss the more complicated problem of locating multiple influencers from a collective point of view. Progress rooted in collective influence theory, belief-propagation and computer science will be presented. Finally, we present some applications of influencer identification in diverse real-world systems, including online social platforms, scientific publication, brain networks and socioeconomic systems.Comment: 24 pages, 6 figure
    corecore