416 research outputs found

    New estimation of the post little ice age relative sea level rise

    Get PDF
    The study area is located in NW Sardinia Island (Italy), Mediterranean Sea. Sardinia is considered stable since the late Pliocene with a negligible subsidence of about 0.01 mm/y. It is therefore normally used to reconstruct the Pleistocene and Holocene sea level curves. Our research focusses on the sea-facing city of Alghero that from 1353 to 1720 was under the Spanish government. During this time, the city was renovated and new buildings edified. Dimension stones were quarried all around Alghero both in the nearby inland and along the coast. Coastal quarries were considered the most suitable for both rock quality and the easiest way to transport the quarried material by boat. The quarried rocks are late Pleistocene dune and beach sandstones deposited from the 132 ka (Marine Isotopic Stage-MIS5) to about 65 ka (MIS4). Sandstones crop out from few cm to 3 m above the present sea level and underwent several consolidation processes related to loading and marine weathering. This latter favoured dissolution and circulation of calcium carbonate which cemented the rocks. It is reported that the Spanish were looking for these "marine" sandstones for their high geotechnical characteristics. Different rules were adopted through time for the size of the dimension stones and this has allowed us to establish a quarry exploitation chronology. For example, "40 x 60 x 20" cm was the size of the dimension stones used for the Alghero Cathedral dated at 1505-1593. Nowadays most of the coastal Spanish quarry floors are 30 centimetres below mean sea level (tidal range is 30 cm). Accordingly, we infer that relative sea level from 1830 AD (and of the Little Ice Age) rose in about 200 years to the present level at the rate of about 1.4 mm/y. Considering that relative sea level rise during the Medieval warm period was of 0.6 mm/y over a period of about 400 years, we may deduce that human influence was strong enough to lead to a relative sea-level rise faster and in shorter time

    Modeling environmental responses of plantassociations by fuzzy set theory

    Get PDF
    A method for studying the response of vegetation to environmental gradients, based on the community niche and fuzzy set theory, is presented. The approach is illustrated using an example from perennial halophilous vegetation along the Northern Adriatic coast of Italy. Compatibility curves are obtained by fuzzy set theoretical methods, and are used tomodel the response functions of plant associations to environmental gradients, including soil and ground water salinity, soil pH, soil and ground water temperature, percentage of sand, and variations in the ground water level. The compatibility curves summarize the similarity of a given plant community, with a particular value of an environmental variable, to the species combination of a given plant association. Compatibility curves offer an alternative approach to non-linear regression and best fit analyses normally used to model single species responses to environmental gradients. The approach is particularly useful given there is no singlemechanisticmodel that can capture the exact shape of the functional response along environmental gradients, and given that environmental data are commonly affected by high levels of noise

    HEMODIALYSIS-RELATED LYMPHOMONONUCLEAR RELEASE OF INTERLEUKIN 12 IN PATIENTS WITH END-STAGE RENAL DISEASE.

    Get PDF
    Abstract: Interleukin-12 (IL-12) is a cytokine produced by peripheral blood mononuclear cells (PBMC) that causes interferon-gamma (IFN-gamma) production and enhancement of cell-mediated cytotoxicity. To clarify the role of hemodialysis biocompatibility on IL-12 production and uremic immunodeficiency, we have studied the IL-12 and IFN-gamma release by PBMC harvested from 12 patients dialyzed with cuprophan membrane (CU), eight patients dialyzed with polymethylmethacrylate membrane (PMMA), and eight nondialyzed uremic patients (UR). Ten healthy subjects constituted the control group (CON). PBMC were cultured for 48 h with and without nonspecific mitogen stimulation. In unstimulated conditions, CU showed an IL-12 PBMC production higher than CON, UR, and PMMA (46.67 +/- 30.13 versus 2.56 +/- 1.38, 6.16 +/- 7.09, and 4.62 +/- 4.76 pg/ml, respectively; P < 0.01). IL-12 production was correlated with C3a concentration measured at the outlet of hemodialyzer after 15 min of dialysis (r = 0.69, P < 0.01). IL-12 release in CU remained unchanged under mitogen stimulation (44.34 +/- 23.86 pg/ml) and was lower than in CON, UR, and PMMA (66.0 +/- 12.41, 68.37 +/- 25.78, and 67.75 +/- 22.61 pg/ml, respectively; P < 0.05). IFN-gamma production was similar, in unstimulated conditions, in all groups. Under stimulation, IFN-gamma release was lower in CU (13.42 +/- 12.04 IU/ml) than in CON, UR, and PMMA (51.84 +/- 30.74, 32.16 +/- 13.86, and 32.16 +/- 13.86 IU/ml, respectively; P < 0.01). These results demonstrate that hemodialysis with CU induces monocyte activation with an enhanced release of IL-12. On the contrary, stimulated PBMC production of both IL-12 and IFN-gamma is lower in these patients than in CON, UR, and PMMA. The altered release of these cytokines could play a role in cell-mediated immunodeficiency of the uremic patients dialyzed with CU

    Kinetics of Rhodopsin Deactivation and Its Role in Regulating Recovery and Reproducibility of Rod Photoresponse

    Get PDF
    The single photon response (SPR) in vertebrate phototransduction is regulated by the dynamics of R* during its lifetime, including the random number of phosphorylations, the catalytic activity and the random sojourn time at each phosphorylation level. Because of this randomness the electrical responses are expected to be inherently variable. However the SPR is highly reproducible. The mechanisms that confer to the SPR such a low variability are not completely understood. The kinetics of rhodopsin deactivation is investigated by a Continuous Time Markov Chain (CTMC) based on the biochemistry of rhodopsin activation and deactivation, interfaced with a spatio-temporal model of phototransduction. The model parameters are extracted from the photoresponse data of both wild type and mutant mice, having variable numbers of phosphorylation sites and, with the same set of parameters, the model reproduces both WT and mutant responses. The sources of variability are dissected into its components, by asking whether a random number of turnoff steps, a random sojourn time between steps, or both, give rise to the known variability. The model shows that only the randomness of the sojourn times in each of the phosphorylated states contributes to the Coefficient of Variation (CV) of the response, whereas the randomness of the number of R* turnoff steps has a negligible effect. These results counter the view that the larger the number of decay steps of R*, the more stable the photoresponse is. Our results indicate that R* shutoff is responsible for the variability of the photoresponse, while the diffusion of the second messengers acts as a variability suppressor

    Skeletonized coronary arteries: pathophysiological and clinical aspects of vascular calcification

    Get PDF
    The role of calcification in coronary artery disease is gaining importance, both in research studies and in clinical application. Calcified plaque has long been considered to be the most important atherosclerotic plaque within the arterial tree and frequently presents a challenge for percutaneous intervention. Current investigations have shown that plaque calcification has a dynamic course that is closely related to the magnitude of vascular inflammation. Numerous inflammatory factors synthesized during the early stages of atherosclerosis induce the expression and activation of osteoblast-like cells localized in the arterial wall that produce calcium. There is no doubt that the role of these factors in calcification associated with coronary artery disease could be a crucial strategic point in prevention and treatment. A number of diagnostic imaging methods have been developed in recent years, but their performance needs to be improved. In this context, we undertook an update on coronary calcification, focusing on physiopathology, clinical implications, and imaging techniques

    Climate changes and human impact on the Mistras coastal barrier system (W Sardinia, Italy)

    Get PDF
    © 2017 Elsevier B.V. Integrated archaeological and geological studies conducted on Mistras coastal barrier system of central Sardinia showed that it developed as transgressive systems during the final stages of the Holocene sea level rise (final stage of the Holocene Climate Optimum, about 6300–6000 cal y BP), and become regressive (prograding) from about 2500 cal y BP, when sea level reached the present elevation. The regression of the coast was, however, not continuous, but characterized by distinct Transgressive-Regressive phases (T-R), associated to precise climatic fluctuations, tied with global eustatic and climatic phases. The first regression occurred between 2500 and 1900 cal y BP. This time interval, known as Roman Warm, coincides with the Phoenician, Punic and Roman attendance of the west Sardinia coast. At that time, areas close to the coastal cities had to host landings and perhaps ports probably located at short distance from the shoreline. Archaeological excavations and findings have documented that in the Mistras area Punic constructed a long boulder structure (probably dated from the 4th century BCE) to better protect an incipient lagoon used as the harbour of the city of Tharros. This had the effect to modify the normal behaviour of the beach system that transformed from spit to barrier lagoon. During the second regressive phase, the well-established beach lagoon system developed quasi continuously for > 1200 y (650 and 1850 CE). This progradation started during a new warm period (Medieval) and continued favoured by gentle sea level fall occurred during the cold Little Ice Age time. During this time, after the abandonment of the city of Tharros and of the Sinis Peninsula, the Mistras area was poorly populated. As consequence, there was no more an active harbour and large sandy dunes developed and nourished the shore allowing a no man-influence progradation of the coast. The third stage is the current one and begun about 165 y ago (post 1850 CE) after the relative sea level rise occurred after the end of the Little Ice Age. Geological and archaeological data of western Sardinia barrier lagoon systems revealed that the Mistras barrier lagoon evolution was human influenced since the Punic time. The study pointed that little human activities on the coast could influence its natural behaviour and landscape, and that little climatic changes both positive and negative can induce progradation or erosion of the system as well
    • …
    corecore