163 research outputs found

    Trend in ice moistening the stratosphere – constraints from isotope data of water and methane

    Get PDF
    Water plays a major role in the chemistry and radiative budget of the stratosphere. Air enters the stratosphere predominantly in the tropics, where the very low temperatures around the tropopause constrain water vapour mixing ratios to a few parts per million. Observations of stratospheric water vapour show a large positive long-term trend, which can not be explained by change in tropopause temperatures. Trends in the partitioning between vapour and ice of water entering the stratosphere have been suggested to resolve this conundrum. We present measurements of stratospheric H_(2)O, HDO, CH_4 and CH_(3)D in the period 1991–2007 to evaluate this hypothesis. Because of fractionation processes during phase changes, the hydrogen isotopic composition of H_(2)O is a sensitive indicator of changes in the partitioning of vapour and ice. We find that the seasonal variations of H_(2)O are mirrored in the variation of the ratio of HDO to H_(2)O with a slope of the correlation consistent with water entering the stratosphere mainly as vapour. The variability in the fractionation over the entire observation period is well explained by variations in H_(2)O. The isotopic data allow concluding that the trend in ice arising from particulate water is no more than (0.01±0.13) ppmv/decade in the observation period. Our observations suggest that between 1991 and 2007 the contribution from changes in particulate water transported through the tropopause plays only a minor role in altering in the amount of water entering the stratosphere

    Towards space based verification of CO<sub>2</sub> emissions from strong localized sources: fossil fuel power plant emissions as seen by a CarbonSat constellation

    Get PDF
    Carbon dioxide (CO<sub>2</sub>) is the most important man-made greenhouse gas (GHG) that cause global warming. With electricity generation through fossil-fuel power plants now being the economic sector with the largest source of CO<sub>2</sub>, power plant emissions monitoring has become more important than ever in the fight against global warming. In a previous study done by Bovensmann et al. (2010), random and systematic errors of power plant CO<sub>2</sub> emissions have been quantified using a single overpass from a proposed CarbonSat instrument. In this study, we quantify errors of power plant annual emission estimates from a hypothetical CarbonSat and constellations of several CarbonSats while taking into account that power plant CO<sub>2</sub> emissions are time-dependent. Our focus is on estimating systematic errors arising from the sparse temporal sampling as well as random errors that are primarily dependent on wind speeds. We used hourly emissions data from the US Environmental Protection Agency (EPA) combined with assimilated and re-analyzed meteorological fields from the National Centers of Environmental Prediction (NCEP). CarbonSat orbits were simulated as a sun-synchronous low-earth orbiting satellite (LEO) with an 828-km orbit height, local time ascending node (LTAN) of 13:30 (01:30 p.m. LT) and achieves global coverage after 5 days. We show, that despite the variability of the power plant emissions and the limited satellite overpasses, one CarbonSat has the potential to verify reported US annual CO<sub>2</sub> emissions from large power plants (&ge;5 Mt CO<sub>2</sub> yr<sup>−1</sup>) with a systematic error of less than ~4.9% and a random error of less than ~6.7% for 50% of all the power plants. For 90% of all the power plants, the systematic error was less than ~12.4% and the random error was less than ~13%. We additionally investigated two different satellite configurations using a combination of 5 CarbonSats. One achieves global coverage everyday but only samples the targets at fixed local times. The other configuration samples the targets five times at two-hour intervals approximately every 6th day but only achieves global coverage after 5 days. From the statistical analyses, we found, as expected, that the random errors improve by approximately a factor of two if 5 satellites are used. On the other hand, more satellites do not result in a large reduction of the systematic error. The systematic error is somewhat smaller for the CarbonSat constellation configuration achieving global coverage everyday. Therefore, we recommend the CarbonSat constellation configuration that achieves daily global coverage

    Validation and data characteristics of methane and nitrous oxide profiles observed by MIPAS and processed with Version 4.61 algorithm

    Get PDF
    The ENVISAT validation programme for the atmospheric instruments MIPAS, SCIAMACHY and GOMOS is based on a number of balloon-borne, aircraft, satellite and ground-based correlative measurements. In particular the activities of validation scientists were coordinated by ESA within the ENVISAT Stratospheric Aircraft and Balloon Campaign or ESABC. As part of a series of similar papers on other species [this issue] and in parallel to the contribution of the individual validation teams, the present paper provides a synthesis of comparisons performed between MIPAS CH4 and N2O profiles produced by the current ESA operational software (Instrument Processing Facility version 4.61 or IPF v4.61, full resolution MIPAS data covering the period 9 July 2002 to 26 March 2004) and correlative measurements obtained from balloon and aircraft experiments as well as from satellite sensors or from ground-based instruments. In the middle stratosphere, no significant bias is observed between MIPAS and correlative measurements, and MIPAS is providing a very consistent and global picture of the distribution of CH4 and N2O in this region. In average, the MIPAS CH4 values show a small positive bias in the lower stratosphere of about 5%. A similar situation is observed for N2O with a positive bias of 4%. In the lower stratosphere/upper troposphere (UT/LS) the individual used MIPAS data version 4.61 still exhibits some unphysical oscillations in individual CH4 and N2O profiles caused by the processing algorithm (with almost no regularization). Taking these problems into account, the MIPAS CH4 and N2O profiles are behaving as expected from the internal error estimation of IPF v4.61 and the estimated errors of the correlative measurements

    Drivers of column-average CO_2 variability at Southern Hemispheric Total Carbon Column Observing Network sites

    Get PDF
    We investigate factors that drive the variability in total column CO_2 at the Total Carbon Column Observing Network sites in the Southern Hemisphere using fluxes tagged by process and by source region from the CarbonTracker analysed product as well as the Simple Biosphere model. We show that the terrestrial biosphere is the largest driver of variability in the Southern Hemisphere column CO_2. However, it does not dominate in the same fashion as in the Northern Hemisphere. Local- and hemispheric-scale biomass burning can also play an important role, particularly at the tropical site, Darwin. The magnitude of seasonal variability in the column-average dry-air mole fraction of CO_2, X_CO_2, is also much smaller in the Southern Hemisphere and comparable in magnitude to the annual increase. Comparison of measurements to the model simulations highlights that there is some discrepancy between the two time series, especially in the early part of the Darwin data record. We show that this mismatch is most likely due to erroneously estimated local fluxes in the Australian tropical region, which are associated with enhanced photosynthesis caused by early rainfall during the tropical monsoon season

    Consistent satellite XCO_2 retrievals from SCIAMACHY and GOSAT using the BESD algorithm

    Get PDF
    Consistent and accurate long-term data sets of global atmospheric concentrations of carbon dioxide (CO_2) are required for carbon cycle and climate related research. However, global data sets based on satellite observations may suffer from inconsistencies originating from the use of products derived from different satellites as needed to cover a long enough time period. One reason for inconsistencies can be the use of different retrieval algorithms. We address this potential issue by applying the same algorithm, the Bremen Optimal Estimation DOAS (BESD) algorithm, to different satellite instruments, SCIAMACHY onboard ENVISAT (March 2002–April 2012) and TANSO-FTS onboard GOSAT (launched in January 2009), to retrieve XCO_2, the column-averaged dry-air mole fraction of CO_2. BESD has been initially developed for SCIAMACHY XCO_2 retrievals. Here, we present the first detailed assessment of the new GOSAT BESD XCO_2 product. GOSAT BESD XCO_2 is a product generated and delivered to the MACC project for assimilation into ECMWF's Integrated Forecasting System (IFS). We describe the modifications of the BESD algorithm needed in order to retrieve XCO_2 from GOSAT and present detailed comparisons with ground-based observations of XCO_2 from the Total Carbon Column Observing Network (TCCON). We discuss detailed comparison results between all three XCO_2 data sets (SCIAMACHY, GOSAT and TCCON). The comparison results demonstrate the good consistency between the SCIAMACHY and the GOSAT XCO_2. For example, we found a mean difference for daily averages of −0.60 ± 1.56 ppm (mean difference ± standard deviation) for GOSAT-SCIAMACHY (linear correlation coefficient r = 0.82), −0.34 ± 1.37 ppm (r = 0.86) for GOSAT-TCCON and 0.10 ± 1.79 ppm (r = 0.75) for SCIAMACHY-TCCON. The remaining differences between GOSAT and SCIAMACHY are likely due to non-perfect collocation (±2 h, 10° × 10° around TCCON sites), i.e., the observed air masses are not exactly identical, but likely also due to a still non-perfect BESD retrieval algorithm, which will be continuously improved in the future. Our overarching goal is to generate a satellite-derived XCO_2 data set appropriate for climate and carbon cycle research covering the longest possible time period. We therefore also plan to extend the existing SCIAMACHY and GOSAT data set discussed here by using also data from other missions (e.g., OCO-2, GOSAT-2, CarbonSat) in the future

    Characterizing model errors in chemical transport modeling of methane: using GOSAT XCH4_{4} data with weak-constraint four-dimensional variational data assimilation

    Get PDF
    We examined biases in the global GEOS-Chem chemical transport model for the period of February–May 2010 using weak-constraint (WC) four-dimensional variational (4D-Var) data assimilation and dry-air mole fractions of CH4_{4} (XCH4_{4}) from the Greenhouse gases Observing SATellite (GOSAT). The ability of the observations and the WC 4D-Var method to mitigate model errors in CH4_{4} concentrations was first investigated in a set of observing system simulation experiments (OSSEs). We then assimilated the GOSAT XCH4_{4} retrievals and found that they were capable of providing information on the vertical structure of model errors and of removing a significant portion of biases in the modeled CH4_{4} state. In the WC 4D-Var assimilation, corrections were added to the modeled CH4_{4} state at each model time step to account for model errors and improve the model fit to the assimilated observations. Compared to the conventional strong-constraint (SC) 4D-Var assimilation, the WC method was able to significantly improve the model fit to independent observations. Examination of the WC state corrections suggested that a significant source of model errors was associated with discrepancies in the model CH4_{4} in the stratosphere. The WC state corrections also suggested that the model vertical transport in the troposphere at middle and high latitudes is too weak. The problem was traced back to biases in the uplift of CH4_{4} over the source regions in eastern China and North America. In the tropics, the WC assimilation pointed to the possibility of biased CH4_{4} outflow from the African continent to the Atlantic in the mid-troposphere. The WC assimilation in this region would greatly benefit from glint observations over the ocean to provide additional constraints on the vertical structure of the model errors in the tropics. We also compared the WC assimilation at 4° × 5° and 2° × 2.5° horizontal resolutions and found that the WC corrections to mitigate the model errors were significantly larger at 4° × 5° than at 2° × 2.5° resolution, indicating the presence of resolution-dependent model errors. Our results illustrate the potential utility of the WC 4D-Var approach for characterizing model errors. However, a major limitation of this approach is the need to better characterize the specified model error covariance in the assimilation scheme
    • 

    corecore