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a b s t r a c t

This paper presents a novel retrieval algorithm for the rapid retrieval of the carbon dioxide total column
amounts from high resolution spectra in the short wave infrared (SWIR) range observations by the
Greenhouse gases Observing Satellite (GOSAT). The algorithm performs EOF (Empirical Orthogonal
Function) based decomposition of the measured spectral radiance and derives the relationship of limited
number of the decomposition coefficients in terms of the principal components with target gas amount
and a priori data such as airmass, surface pressure, etc. The regression formulae for retrieving target gas
amounts are derived using training sets of collocated GOSAT and ground based observations. The pre
cision/accuracy characteristics of the algorithm are analyzed by the comparison of the retrievals with
those from the Total Carbon Column Observing Network (TCCON) measurements and with the modeled
data, and appear similar to those achieved by full physics retrieval algorithms.

1. Introduction

Long term experience using GOSAT (Greenhouse gases Obser
ving Satellite) observations has shown promising prospects and
benefits of carbon dioxide satellite remote sensing for estimating
regional CO2 fluxes [1,2]. An important part of the GOSAT mission
is the development of the retrieval algorithms that combine
measured spectral data with available a priori information to es
timate column averaged dry volume CO2 mixing ratios (XCO2)
[3 8]. These algorithms are continuously upgraded in order to
improve their productivity or yield (number of valid retrievals),
precision/accuracy characteristics, computation efficiency, etc.
However, the quality of the satellite based atmospheric CO2 data is
still criticized [9] implying the need to continue to improve

retrieval algorithms.
New greenhouse gas observing missions, such as OCO 2 (Or

biting Carbon Observatory 2) [10], and forthcoming missions, such
as TanSat (Carbon Satellite: Tan means "carbon" in Chinese) [11]
and GOSAT 2 [12] face new challenges in satellite based data
processing including the development of very fast retrieval pro
cedures to cope with huge data amounts.

In this paper we propose a very rapid retrieval algorithm,
which is based on the decomposition of the spectral radiance of
the reflected solar radiation by using empirical orthogonal func
tions (EOF). This algorithm has been implemented and tested
employing GOSAT observations.

EOF methodology is a multipurpose tool that is known to be
widely used in atmospheric science, e.g. for the extraction of the
characteristic patterns from high resolution spectral data [13]. An
EOF based approach was used for retrievals of the atmospheric
methane profiles from the Atmospheric Infrared Sounder (AIRS)
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thermal infrared spectra [14]. The possibility of applying an EOF
application to CO2 retrievals from the GOSAT measurements in 1.6
mm CO2 absorption band was demonstrated in [15]. However, in
formation from the reflected sunlight radiance spectra in only the
1.6 mm band is generally insufficient for accurate CO2 retrievals
due to optical path modification by aerosol and clouds [4]. As a
rule, to account for the optical path modifications we need addi
tional near infrared GOSAT measurements in 2.06 mm CO2 and in
0.76 mm O2 absorption bands. Also, we need to find a way to in
clude available a priori data and measurement conditions when
using the EOF methodology.

The paper is organized as follows. Section 2 introduces the
methodology and software for EOF decomposition of radiance
spectra. In Section 3, we briefly outline the implementation of the
EOF approach to GOSAT data processing using all available near
infrared bands as well as a priori information. Section 4 describes
the validation of the retrieved XCO2 using ground based ob
servations and the modeled data. Section 5 summarizes the
results.

2. EOF-decomposition technique

Typical sets of sampled high resolution radiance spectra that
serve as background data for atmospheric CO2 retrievals are
overabundant (hundreds or thousands of data points) to be used in
regression based algorithms. Large number of data is beneficial for
reducing random retrieval errors, but on the other hand the
variability of the observed spectra is controlled to large extent by
very limited number of parameters such as column abundance of
major trace constituents, optical path, temperature and others.
Thus, reduction of the degrees of freedom via Principal Component
Analysis (PCA) is expected to be effective. To this end the spectral
radiance or, for better linearity, the normalized logarithm of
spectral radiance can be expressed as a linear combination of
Empirical Orthogonal Functions (EOF)Ψ :

∑ ε Ψ ν= = = ( )ν νR l L N, 1, 2, ... , and 1, 2, ... , 1l l m m, , ,

Or in matrix form

Ψ= ⋅ ( )R E , 1a

where l is the number of the observation, ν is the number of
spectral channel, and E is matrix of weighting coefficients. The
index m ranges from 1 to M, where = ( )M L Nmin , .

Standard procedures of EOF decomposition are usually im
plemented in tune with Singular Value Decomposition (SVD) or
Principal Component Analysis (PCA) that yields ranged weighting
coefficients (first coefficient accounts for maximal R variability).
This facilitates the selection of a limited set of the weighting
coefficients to approximate the original function, which can be
used to build the regression relations.

In this study we used subroutine LSVRR from the IMSL library
(http:// www.roguewave.com/products services/imsl numerical li
braries) that implements the SVD based algorithm briefly outlined
below [16].

It is known that for any L � N real matrix R there exists an L x L
orthogonal matrix U and a N � Northogonal matrix V such that

Σ= ( )U RV 2T

where Σ is diagonal matrix, i.e. Σ σ σ= ( )diag , ... , m1 , and
= ( )m L Nmin , . The scalars σ σ≥ ≥ ≥... 01 2 are called as the sin

gular values of R.The columns of U are called the left singular
vectors of R. The columns of V are the right singular vectors of R.

By multiplying (2) by U (left) and by −V 1 (right) and accounting
for fact that UUT is a unity matrix we obtain

Σ= ( )−R U V 31

By denoting Ψ = =−V VT1 (EOF) and Σ=E U (matrix of weighting
coefficients) we can rewrite Eq. (3) in the form of (1a).

3. Implementation of EOF decomposition for GOSAT data
processing

The proposed algorithm for fast estimates of atmospheric XCO2

includes the following steps:

� extraction of the compact information from the measured
spectral radiance by its EOF decomposition, followed by

� combining the extracted data (weighting coefficients of the
decomposition) with some available input or a priori informa
tion; and

� derivation of regression formulae that relate this combined in
formation with target gas amounts using training sets of col
located GOSAT and ground based reference observations.

3.1. Reference bases for the EOF decomposition

The reference orthogonal bases Ψ = VTwere created for the
three spectral regions that were selected for XCO2 retrieval from
GOSAT observations [8]. These regions include

(1) 6180 cm-1 6270 cm-1 from TANSO FTS Band 2,
(2) 4815 cm-1 4885 cm-1 from TANSO FTS Band 3,
(3) 13000 cm-1 13090 cm-1 from TANSO FTS Band 1 (auxiliary

spectral region used for the atmospheric correction).

Given the GOSAT spectral sampling interval in the near infra
red, which is approximately 0.2 cm-1, the number of available
spectral channels is about 450 in spectral regions 1 and 3
( ( ) ( )≈ ≈N N 4501 3 ); and about 350 in spectral region 2 ( ( ) ≈N 3502 ).

For the construction of the “measured signal” R, we used the
scalar spectral radiance S that was generated by NIES operational
algorithm for CO2 retrievals [17]. This scalar radiance was com
puted from P and S signal polarizations provided by the Japan
Aerospace Exploration Agency (JAXA) within the L1B product [18].

For spectral region (1), we defined R as

=
− +

( )( )
( ) ( )R

S S

A

ln ln
, 41

1 1
max

where ( )S 1
max is the maximal value of scalar radiance in the spectral

range (1) and airmass A is defined as

( ) ( )θ θ= + ( )A 1/cos 1/cos , 50 1

where θ0 and θ1 are solar and satellite zenith angles, respectively.
To construct the linear regression, we expect some advantages

when using logarithm of radiance instead of absolute radiance
values because the logarithm provides more linear dependence of
R on optical thickness and XCO2. In the GOSAT data processing,
radiance S is obtained by transforming the interferograms mea
sured by TANSO FTS on board GOSAT, and the apodization effect
can result in non physical negative radiance values. This usually
happens in case of deep absorption lines that are typical for
spectral regions (2) and (3). For this reason, instead of using a
logarithm transformation we defined R for the spectral regions
(2) and (3) as follows

=
( )

( )
( )

( )
R

S
S

.
6

2,3
2,3

2,3
max

To generate a data set for creating the reference orthogonal



bases, we applied Cloud and Aerosol Imager (CAI) cloud flag
screening in the same way as for the NIES L2 processing [6,18]. The
CAI screening procedure was designed to remove TANSO FTS ob
servations contaminated with optically thick clouds. Typically CAI
screened sets include about 40,000 to 50,000 observations per
month. These sets could include observations that were taken in
the presence of the sub visual cirrus clouds or optically thick
aerosols, which might require further data screening. In this study,
we use only over land observations (reducing the original data set
by 50% or more) for four months (January, April, July, and October)
representing different seasons in 2010 and 2012. Additionally, we
skip “noisy” data with a Signal to Noise Ratio (SNR) below 75 in at
least one of the three TANSO FTS bands.

GOSAT CAI screened observations are non uniformly dis
tributed over latitude L. For example, in January 2010 the latitu
dinal zone ≤ <L15 300 0includes more than 4000 over land ob
servations, whilst the zone ≤ <L45 600 0 includes only 18 similar
observations. Using such distributed data for basis creation in
volves a risk that “sparse regions” would weakly affect the derived
weighting coefficients (which in turn could result in poor XCO2

approximations for these regions). In addition, using standard
software for EOF decomposition imposes limitations on the size of
the data set for the basis construction. With this in mind, we
created the required data set in two steps:

� First, we divided the globe into latitudinal zones of 150 width
and selectively eliminated part of the observations to reduce
data amount and balance data distribution over latitude. This
results in the data set of about 25,000 observations taken within
eight months that represent four seasons of 2010 and 2012;

� Further reduction (e.g. to reduce computational costs and time
consumption) was performed by simple selection of each n th
observation in the chronologically ranged set. In particular, for
reference orthogonal basis computation we used reduced data
set of about 5000 observations (n¼5). The locations of these
observations are shown in Fig. 1. The spectral radiances within
this data set were reduced to the unified wavenumber grids by
the spline based interpolation.

With this compact data selection, we created sets of reference
EOFs for each spectral band

( ) ( )Ψ = = ( )V k, 1, 2, 3, 7k k
T

that should be representative for XCO2 retrievals. As a result

any spectral signal can be expressed in terms of reference EOFs
with weighting coefficients defined by

( ) ( ) ( ) ( ) ( )Ε Ψ= ⋅ = ⋅ ( )R R V . 7ak k k
T

k k

The number of weighting coefficients for EOF decomposition of
the individual observations is limited by the numbers of spectral
channels ( )N j , j¼1, 2, 3 giving a total of about 1250 for all spectral
regions. Assuming this number is excessive, we use first ( )M k (k¼1,
2, 3) of ranged (i.e. maximal) coefficients for each k th spectral
region. In this study we have empirically chosen the following
values: ( ) =M 351 and ( ) ( )= =M M 202 3 .

These limited numbers of weighting coefficients provide a
reasonably accurate fit of the original radiance spectra by the EOF
decomposition. Fig. 2 shows typical radiance spectra (normalized
to the maximal values) in spectral regions (1) and (2) as well as
similarly normalized approximation errors, that are mostly below
(spectral region (1)) or comparable (spectral region (2)) with the
observation noise levels.

3.2. Construction of the generalized vector of weighting coefficients

For each observation the generalized vector of weighing coef
ficients consists of first ( )M k weighting coefficients for three
spectral regions as well as of P pieces of input or a priori in
formation for this observation (e.g. observation geometry and/or
meteorological conditions).

{ }( ) ( ) ( ) ( ) ( ) ( )Ε Π Π˜ =
( )

( ) ( ) ( )E E E E E E, ... , , , ... , , , ... , ; , ...
8

M M M
P1

1
1 2

1
2 3

1
3 1

1 2 3

This generalized vector is expected to include necessary
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Fig. 1. Global locations of the GOSAT observations (footprints) that were chosen to
create reference bases for the EOF decomposition, Section 3.1 (crosses) and the
training Subsets 1 and 2, Section 3.3 (solid circles).

Fig. 2. Examples of normalized radiance spectra and EOF-approximation errors for
spectral regions (1) (upper panels) and (2) (lower panels). Dashed lines indicate the
noise levels, which are estimated as 1/SNR in the spectral regions.



information on XCO2 that is extracted using “transformation vec
tor” G

Ε= ⋅ ˜ ( )X G 9CO2

Eq. (9) can be applied to any arbitrary number of observations. In
the case of L observations, XCO2is a vector of dimension L, G is a
transposed vector of dimension ( ) ( ) ( )= + + +Q M M M P1 2 3 , and Ε̃ is
a matrix of dimension ×Q L: each l th row of this matrix is the
generalized vector of weighting coefficients for the l th observation.

As a priori or input information Π Π Π, , ... , P1 2 in the Eq. (8) we
use airmass A (Π1), surface pressure PS(Π2), and a priori XCO2 value
(Π3). To account for the non linear radiance dependence on A and
PS, we also included their squared values A2(Π4) and PS

2 (Π5). These
values (Π1 Π3) were used partly by analogy with some tested re
trieval algorithms [3,8] that explicitly include them in the retrieval
procedure to provide accurate XCO2 estimates. For example, air
mass is required to determine target gas optical depth and surface
pressure is used to transform total column amount of CO2 to dry
volume mixing ratio (XCO2).

A priori XCO2 values were defined on the basis of “zonal” CO2

volume mixing ratios. We compute zonal concentrations by
longitudinal (from 0° to 360°) and latitudinal (from lower zone
bound to upper zone bound) averaging of XCO2, which were si
mulated by the NIES atmospheric transport model [19]. An equi
distant latitudinal grid of 10° was used. We created zonal X̃CO2for
four months (January, April, July, and October) of 2010. Next we
assume constant zonal XCO2 within seasons (e.g. for all winter
months we used January data, for all spring months we used April
data, etc.). Interannual XCO2 growth of 2 ppm per year was also
included, i.e. zonal X̃CO2 for arbitrary year YYYY was calculated as

( ) ( )˜ = ˜ + × ( − )X YYYY X YYYY2010 2 2010CO CO2 2 .

3.3. Training of the algorithm using reference ground based
observations

The training procedure includes

� EOF decomposition (Eq. (7a)) of the spectral radiance for all L
observations within the training subset using predefined ortho
gonal matrices (Eq. (7)). The EOF decomposition was preceded
by the spline based interpolation of the spectral radiances onto
unified wavenumber grids that were used for the generations of
the reference bases ( )Ψ k (Section 3.1);

� Construction of the matrix Ε̃*of dimension ×Q L that includes L
rows of the generalized vectors of weighting coefficients of
length Q (Eq. (8)) for all observations of the training subset. The
subscript * denotes “training subset”.

� Determination of the “transformation vector” G from the con
dition of the best fit of XCO2 over the “training subset” of the
observations for which XCO2 values are somehow known

( )Ε Ε Ε= * ⋅ ˜
*⋅ ˜*⋅ ˜

* ( )
−

G X . 10CO
T T

, 2
1

For training and validation purposes we used TCCON ground
based XCO2observations [20 27]. TCCON XCO2 measurements ta
ken within 7 1 h of the GOSAT overpass time were chosen as the
“known” value for the GOSAT observation if the footprint of the
observation was located within a 5° latitude longitude circle
around TCCON site. In this study we used data from 12 TCCON
stations, Białystok (53.2 °N, 23.1 °E), Bremen (53.1 °N, 8.85 °E),
Darwin (45.0 °S, 169.7 °E), Garmisch (47.5 °N, 11.1 °E), Karlsruhe
(49.1 °N, 8.44 °E), Lamont (36.6 °N, 97.5 °W), Lauder (45.0 °S,
169.7 °E), Orléans (48.0 °N, 2.11 °E), Park Falls (45.9 °N, 90.3 °W),
Sodankylä (67.4 °N, 26.6 °E), Tsukuba (36.0 °N, 140.2 °E), and
Wollongong (34.4 °S, 150.9 °E), for the period from June 2009 to
December 2012. We selected about 12,000 collocated GOSAT

TCCON observations (including about 9000 over land observa
tions) from the NIES L2 CAI screened data set [17]. These ob
servations were non uniformly distributed among TCCON sites:
the largest share of them is located around Lamont (mostly be
cause of frequent requests for special observation mode for this
site as well as of high percentage of clear sky conditions over La
mont). Two training subsets were created using only over land
observation: Subset 1 included data around the Lamont site only;
the second (Subset 2) was created with roughly balanced re
presentations of different stations: for Lamont data we choose one
of each five sequential observations (1 in 5 collocations); Wol
longong (1:4) Garmisch, Karlsruhe, Orléans, Darwin, Park Falls, and
Tsukuba (1:3); Białystok, Bremen, Lauder (1:2); Sodankylä (1:1).
Both these training subsets include about 3200 scans. The global
locations of these observations from both training subsets are
shown in Fig. 1.

3.4. Retrievals of XCO2 and post screening procedure

Provided that the transformation vector G is defined, the XCO2

retrieval procedure for an arbitrary observation includes the con
struction of a generalized vector Ε̃ , Eq. (8), for this observation and
the application of Eq. (9) to compute XCO2 value. The only output
of the retrieval procedure is XCO2, no information on retrieval
uncertainty or averaging kernel is available.

Following tested XCO2 retrieval algorithms [3 8], we also stu
died the possibility to improve retrieval quality by applying post
screening procedures. In this study, the post screening was im
plemented by limiting the discrepancy between measured spectral
radiance ( )S 1,2,3 and its approximation by SVD decomposition *( )S 1,2,3

with a limited number of the weighting coefficients, Eq. (9). The
following expression for spectral region kwas utilized to char
acterize the discrepancy

( )
( )

( )χ̃ =
∑ − *

( )
( )

= ( ) ( )

( )

( )

N

S S

S

300
,

11

k
k

i
N

k k

k

2
1

2

max 2

k

where ( )N k and ( )S k
max are the number of spectral channels and

maximal value of the radiance, respectively. A numerical coeffi
cient of 300 corresponds to designated signal to noise ratio for
GOSAT observations [18].

4. Validation of the EOF-based XCO2 retrievals

4.1. Validation using TCCON data

Fig. 3 and Table 1 show the comparison results of the GOSAT
EOF retrievals and TCCON XCO2 for 12 TCCON sites within the
coincidence criterion. The figure shows the time series of the XCO2

retrievals and the table presents key statistical characteristics of
the GOSAT EOF (Y ) and TCCON (X ) XCO2 relationship that include:

Bias:

( )= − ( )Bias Y X , 12i i

where the overline denotes averaging over coincident
( = )N i N1, 2, ... , observations assuming uniform errors in X and

Y ;
Standard deviation:

( )= − − ( )STD Y X Bias ; 13i i
2

Pearson's correlation coefficient



( )( )
( ) ( )

=
− −

− − ( )
r

X X Y Y

X X Y Y
,

14

i i i i

i i i i
2 2

and the linear regression slope (Slope). Deviations of the Slope from

unity imply that the retrieval results fail to reproduce temporal and/
or spatial variations of XCO2 as compared to reference TCCON data.

The left hand panels of Fig. 3 present retrieval results for the
training Subset 1 (using the Lamont site only) and right hand
panels show the results for the training Subset 2 (selected

Fig. 3. a. GOSAT versus TCCON XCO2 intercomparison results for the collocated observations around Lamont, Park Falls, Białystok, and Orléans in terms of time series. GOSAT
retrievals were obtained with training Subsets 1 (left-hand panels) and 2 (right-hand panels), respectively. Both post-screened (open triangles) and non-filtered (crosses)
GOSAT-EOF retrievals are shown versus TCCON data (solid circles); day number is counted from January 1, 2009. b. Same as in Fig. 3a but for Tsukuba, Wollongong, Darwin,
and Lauder TCCON sites.



observations over 12 TCCON sites). As expected, with Subset 1 we
have almost perfect XCO2 retrievals over Lamont (in this case the
retrieval procedure has been applied directly to the training set).
However, the retrievals around other TCCON sites are much worse.
In particular, for Northern Hemisphere sites such as Park Falls and
Sodankylä both the bias and scatter (STD) of XCO2 with respect to
the “reference” TCCON data are large compared to the results of
recently developed algorithms [7]. Moreover, using Subset 1 re
sults in the transfer of Lamont like seasonal pattern to Southern
Hemisphere regions (Darwin, Wollongong and Lauder sites) that
produces noticeable false seasonal variations of the retrieved
XCO2. Additionally, the Southern Hemisphere retrievals are
strongly biased and have rather large scatter. Unfortunately, post
screening by limiting spectral discrepancy does not fix these
drawbacks. Some better results hold when applying the post
screening with chi squared test (Eq. 11) as follows

( ) ( ) ( )χ χ χ˜ ≤ ˜ ≤ ˜ ≤ ( )1; 5; 5. 151 2 3

These limitations considerably reduced the number of “ap
proved” observations: as seen in Table 1, we have two fold re
duction for Park Falls site and about eight fold reduction for So
dankylä (statistical characteristics of post filtered results are
shown in brackets). Additionally, we have some reduction of
scatter. However, other statistical characteristics (bias, correlation
coefficient, and slope) are not improved. Post screening does not
remove the false seasonal cycles for the Southern Hemisphere.

Significant improvement of the retrieval results was achieved

when using training Subset 2 (Table 1 and right hand panels in
Figs. 3a and b).). In this case, application of the retrieval procedure
to the training set directly leads to the following precision/accu
racy characteristics: mean bias of 0.00 ppm, standard deviation of
1.49 ppm, correlation coefficient of 0.91, and regression slope of
0.91. As expected, we have a small degradation of the results for
Lamont site as compared with training Subset 1. At the same time,
we have noticeable improvement for almost all Northern Hemi
sphere sites and significant improvements for Southern Hemi
sphere: as seen in Fig. 3, the XCO2 retrievals now more accurately
reproduce smooth TCCON like inter annual growth with no “false”
seasonal cycles. As well as for Subset 1, the application of post
screening by limiting spectral discrepancy does not result in much
improvement in the retrieval results. A small improvement of
scatter does not justify the considerable reduction of observation
data output.

For comparison purposes, we have also included in the Table 1
XCO2 retrievals by the NIES operational algorithm, version v02.21;
release level for General Users. A considerable number of ob
servation points from Subsets 1 and 2 are excluded from the op
erational Subset 3, mostly at the stage of post screening [6]. The
accuracy and precision of EOF based algorithm are generally
comparable to the operational algorithm, with similar character
istics while providing a noticeably higher yield (N) of retrievals.

As mentioned above, collocated GOSAT TCCON observations
summarized in the Table 1 were selected from the NIES L2 CAI
screened data set. The CAI based pre screening removes GOSAT
observations taken in presence of optically thick/visible clouds.

Table 1
Statistical characteristics of the GOSAT versus TCCON XCO2 intercomparison. Subsets 1 and 2 corresponds to training Subsets 1 and 2 (Section 3.3). The Subset 3 includes
XCO2 retrievals by NIES operational algorithm, version v02.21; release level for General Users. N is the number of XCO2 retrievals (yield). For Subsets 1 and 2 N is presented
for the algorithm application without (no parentheses) and with (in parentheses) application of post-screening procedure, Section 3.4. Other comparable characteristics
(mean bias, standard deviation STD, regression slope and correlation coefficient r) are defined in Section 4.1.

Site Subset N Bias (ppm) STD (ppm) Slope r

Białystok 1 204 (147) 0.54 (0.52) 1.40 (1.36) 0.90 (0.89) 0.96 (0.97)
2 204 (147) -0.30 ( -0.36) 1.01 (1.01) 0.99 (0.98) 0.98 (0.98)
3 134 -0.64 1.89 1.07 0.94

Bremen 1 111 (75) 0.27 (0.12) 1.63 (1.70) 0.99 (1.03) 0.90 (0.91)
2 111 (75) -0.58 (-0.67) 1.69 (1.91) 1.07 (1.12) 0.90 (0.90)
3 68 -0.81 2.22 1.22 0.82

Darwin 1 648 (613) -0.34 (-0.29) 2.29 (2.27) 1.66 (1.61) 0.67 (0.68)
2 648 (613) 0.22 (0.25) 0.99 (0.97) 1.00 (0.99) 0.90 (0.90)
3 256 -1.91 1. 60 1.35 0.84

Garmisch 1 574 (343) 1.28 (1.26) 1.43 (1.37) 1.05 (1.04) 0.92 (0.94)
2 574 (343) 0.49 (0.60) 1.32 (1.22) 1.03 (1.00) 0.95 (0.95)
3 313 0.08 2.35 1.26 0.82

Karlsruhe 1 569 (358) 0.28 (0.43) 1.50 (1.40) 0.85 (0.81) 0.90 (0.92)
2 569 (358) -0.77 (-0.63) 1.21 (1.16) 0.95 (0.92) 0.94 (0.94)
3 345 -1.24 2.28 0.97 0.77

Lamont 1 3197 (2499) -0.02 (-0.04) 1.06 (1.10) 0.95 (0.95) 0.95 (0.95)
2 3197 (2499) -0.45 (-0.45) 1.36 (1.41) 0.90 (0.87) 0.91 (0.91)
3 2022 -1.97 1.81 1.10 0.87

Lauder 1 92 (71) 2.42 (1.97) 2.10 (2.09) 3.21 (3.17) 0.49 (0.51)
2 92 (71) 0.64 (0.64) 0.74 (0.69) 1.00 (0.95) 0.82 (0.84)
3 68 -0.98 1.88 2.56 0.70

Orléans 1 429 (278) 0.25 (0.41) 1.19 (1.17) 1.02 (1.02) 0.95 (0.95)
2 429 (278) -0.26 (-0.04) 0.98 (0.96) 0.93 (0.93) 0.96 (0.97)
3 270 -1.40 2.18 1.12 0.84

Park Falls 1 1147 (527) 1.21 (1.64) 2.22 (1.90) 0.92 (0.85) 0.79 (0.87)
2 1147 (527) 0.24(0.52) 1.62 (1.54) 0.91 (0.91) 0.89 (0.92)
3 641 -0.41 2.39 1.32 0.85

Sodankylä 1 334 (43) 2.13 (0.79) 2.30 (1.64) 0.73 (0.90) 0.83 (0.81)
2 334 (43) 0.18 (-1.06) 2.05 (1.72) 0.81 (1.12) 0.86 (0.82)
3 210 -0.55 2.39 1.29 0.89

Tsukuba 1 174 (77) 0.78 (1.39) 2.23 (2.04) 1.08 (0.83) 0.64 (0.74)
2 174 (77) 0.51 (0.98) 1.69 (1.66) 1.04 (0.99) 0.79 (0.84)
3 102 1.52 3.17 1.96 0.56

Wollongong 1 926 (759) 0.87 (0.76) 2.49 (2.49) 1.62 (1.65) 0.58 (0.57)
2 926 (759) 0.29 (0.31) 1.19 (1.16) 0.89 (0.89) 0.85 (0.85)
3 707 -0.97 2.45 1.57 0.62



However, the remaining data could be still affected by aerosols
and/or optically thin (sub visual) cirrus clouds. NIES L2 operational
algorithm is designed to correct these light scattering effects by
simultaneous retrievals of both gas concentrations and aerosol/
cloud optical thickness. The proposed EOF based algorithm has
been trained using the observation data that are affected by at
mospheric light scattering. We expect that such training allows for
optical path modification by aerosols and clouds. These expecta
tions are generally supported by the results in the Table 1: the
precision/accuracy characteristics of EOF based algorithm are
comparable with the similar characteristics of the “full physics”
algorithm that simultaneously retrieves target gas amount and
aerosol/cloud optical thickness.

We also performed independent XCO2 retrievals for the GOSAT
observations over TCCCON site at Park Falls using the simplified
algorithm (IMAP DOAS [30]) that ignores light scattering effects.
The precision/accuracy of these retrievals proved to be very poor:
mean bias of 8.9 ppm, standard deviation of 22.9 ppm and cor
relation coefficient r ¼ 0.19. These data are further evidence that
1) we processed GOSAT observations affected by aerosols and/or
optically thin clouds; and 2) EOF based algorithm does account for
optical path modification by aerosols and clouds.

The presented results demonstrate that EOF based algorithm
successfully reproduces dissimilar XCO2 seasonal cycles for in
dividual TCCON sites. Note also that for the validation purpose we
used all available TCCON data, while for training we selected about
30% of these data. However, to overcome a certain circularity of
the approach (i. e., the use of similar data for training and vali
dation), additional tests are required.

4.2. Additional tests using model simulations

To additionally test the EOF based retrieval algorithm we select
about 25,000 observations taken all over the globe within eight
months that represent four seasons of 2010 and 2012, Fig. 1. (Re
call that we used a reduced 1:5 version of this set to create the
reference orthogonal basis). As reference XCO2 data we use the
original output of NIES (National Institute for Environmental stu
dies) atmospheric tracer transport model, version 08.1i [19].

The application of the EOF based algorithm to these global
observations gave strongly underestimated XCO2 for the low sur
face pressure PS values that were beyond the range of PS variations
over the TCCON sites (Fig. 4). These discrepancies are quite ex
plainable: a decrease in gaseous optical thickness due to the drop
of PS is interpreted as low XCO2 values. A clearly expressed de
pendence of the discrepancies on PS enables one to derive a simple
correction formula. However, such corrections are beyond the
purposes of this study and instead we just limit ourselves with
observations for PS values that do not exceed the training set
limits. Namely, we discard observations with <P 880S hPa (there
are about 11% of such observations in the extended test set). The
remaining �90% data show rather good agreement with the re
ference model data except several strongly underestimated XCO2

values (Fig. 4), all of which were taken over polar region of Eastern
Hemisphere under low Sun conditions (i.e. again under conditions
that are not covered by the training set) (Fig. 4).

Table 2 summarizes key statistical characteristics of the EOF
model XCO2 intercomparison. As seen from the table, the worst
characteristics (i.e. maximal discrepancies) are seen for the tropics,
which can be partially explained by the small number of tropics
observations in the training set. Nevertheless, statistical char
acteristics are comparable with similar characteristics of recently
developed algorithms [7] with a significant benefit in the amount
of the available data (yield) and computation time.

5. Discussion and conclusions

Development of very fast XCO2 retrieval algorithms to process
the huge amounts of ongoing (e. g. from GOSAT and OCO 2) and
future (e.g. TanSat, GOSAT 2, etc.) satellite observation data is still
of interest.

We propose a novel retrieval algorithm for rapid retrieval of
carbon dioxide total column amounts from the Greenhouse gases
Observing Satellite (GOSAT) observations. The algorithm performs
EOF decomposition of the measured spectral radiance and com
bines a limited number of the decomposition coefficients in terms
of principal components with a priori data such as airmass, surface
pressure, etc. The regression formulae for retrieving target gas
amounts are derived using training sets of collocated GOSAT and
ground based observations.

This regression like algorithm proves to be a promising option

Fig. 4. The difference between GOSAT-EOF XCO2 retrievals and NIES-TM model
data as a function of surface pressure for the test set of about 25 000 cloud-free
GOSAT observations taken within eight months that represent four seasons of 2010
and 2012 (upper panel). Lower panel show the distribution of the surface pressure
values within test set of GOSAT observations around 12 TCCON sites. The vertical
line in the upper panel indicates the value of the surface pressure, below which the
current algorithm version is not valid.

Table 2
Statistical characteristics of the GOSAT-EOF versus model XCO2 intercomparison.

N Bias (ppm) s (ppm) Slope r

All observations 22602 0.93 1.48 1.00 0.86
North, latitude 423.5° 8940 0.59 1.45 1.05 0.90
South, latitude o�23.5° 3436 0.74 0.96 0.87 0.91
Tropics, �23.5° o latitude
o23.5°

10226 1.29 1.56 0.94 0.81



with very low computational costs and a rather encouraging
quality of retrieval results: the algorithm provides the XCO2 pre
cision/accuracy that is comparable with similar characteristics of
current operational data [3 8]. Additionally, this algorithm pro
vides an impressive yield (number of the retrievals in the final
product).

The precision/ accuracy of the algorithmwere shown to depend
dramatically on the selection of the training set that must span the
variability of XCO2 and observation conditions (e. g. airmass, sur
face pressure, etc.). To create a training set we used reference
observation data from twelve TCCON sites and rather simple cri
teria to select collocated GOSAT TCCON observations. Further im
provement of the global algorithm precision/ accuracy is expected
from extension of the training set by 1)including additional TCCON
sites (e. g. Caltech, Eureka, and Edwards, Northern America; Ny
Alesund and Paris, Europe); and 2) by using more advanced col
location criteria, such as the T700 colocation method [20] or the
model based methods [7,28,29]. These advanced criteria enable us
to expand areas of GOSAT TCCON collocated data providing higher
variability of meteorological and geo locational conditions within
the training set.
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