24,208 research outputs found

    Control of scroll wave turbulence using resonant perturbations

    Get PDF
    Turbulence of scroll waves is a sort of spatio-temporal chaos that exists in three-dimensional excitable media. Cardiac tissue and the Belousov-Zhabotinsky reaction are examples of such media. In cardiac tissue, chaotic behaviour is believed to underlie fibrillation which, without intervention, precedes cardiac death. In this study we investigate suppression of the turbulence using stimulation of two different types, "modulation of excitability" and "extra transmembrane current". With cardiac defibrillation in mind, we used a single pulse as well as repetitive extra current with both constant and feedback controlled frequency. We show that turbulence can be terminated using either a resonant modulation of excitability or a resonant extra current. The turbulence is terminated with much higher probability using a resonant frequency perturbation than a non-resonant one. Suppression of the turbulence using a resonant frequency is up to fifty times faster than using a non-resonant frequency, in both the modulation of excitability and the extra current modes. We also demonstrate that resonant perturbation requires strength one order of magnitude lower than that of a single pulse, which is currently used in clinical practice to terminate cardiac fibrillation. Our results provide a robust method of controlling complex chaotic spatio-temporal processes. Resonant drift of spiral waves has been studied extensively in two dimensions, however, these results show for the first time that it also works in three dimensions, despite the complex nature of the scroll wave turbulence.Comment: 13 pages, 12 figures, submitted to Phys Rev E 2008/06/13. Last version: 2008/09/18, after revie

    Energy Density Functionals From the Strong-Coupling Limit Applied to the Anions of the He Isoelectronic Series

    Full text link
    Anions and radicals are important for many applications including environmental chemistry, semiconductors, and charge transfer, but are poorly described by the available approximate energy density functionals. Here we test an approximate exchange-correlation functional based on the exact strong-coupling limit of the Hohenberg-Kohn functional on the prototypical case of the He isoelectronic series with varying nuclear charge Z<2Z<2, which includes weakly bound negative ions and a quantum phase transition at a critical value of ZZ, representing a big challenge for density functional theory. We use accurate wavefunction calculations to validate our results, comparing energies and Kohn-Sham potentials, thus also providing useful reference data close to and at the quantum phase transition. We show that our functional is able to bind H−^- and to capture in general the physics of loosely bound anions, with a tendency to strongly overbind that can be proven mathematically. We also include corrections based on the uniform electron gas which improve the results.Comment: Accepted for the JCP Special Topic Issue "Advances in DFT Methodology

    Jastrow correlation factor for atoms, molecules, and solids

    Get PDF
    A form of Jastrow factor is introduced for use in quantum Monte Carlo simulations of finite and periodic systems. Test data are presented for atoms, molecules, and solids, including both all-electron and pseudopotential atoms. We demonstrate that our Jastrow factor is able to retrieve a large fraction of the correlation energy

    Examination of the factor structure of the Schizotypal Personality Questionnaire (SPQ) among British and Trinidadian adults

    Get PDF
    Much debate in schizotypal research has centred on the factor structure of the Schizotypal Personality Questionnaire (SPQ), with research variously showing higher-order dimensionality consisting of two to seven dimensions. In addition, cross-cultural support for the stability of those factors remains limited. Here, we examined the factor structure of the SPQ among British and Trinidadian adults. Participants from a White British sub-sample (n = 351) resident in the UK and from an African Caribbean sub-sample (n = 284) resident in Trinidad completed the SPQ. The higher-order factor structure of the SPQ was analysed through confirmatory factor analysis, followed by multiple-group analysis for the model of best-fit. Between-group differences for sex and ethnicity were investigated using multivariate analysis of variance in relation to the higher-order domains. The model of best-fit was the four-factor structure, which demonstrated measurement invariance across groups. Additionally, these data had an adequate fit for two alternative models: a) 3 factors and b) a modified 4-factor. The British sub-sample had significantly higher scores across all domains than the Trinidadian group, and men scored significantly higher on the disorganised domain than women. The four-factor structure received confirmatory support and, importantly, support for use with populations varying in ethnicity and culture

    Transport properties of annealed CdSe nanocrystal solids

    Full text link
    Transport properties of artificial solids composed of colloidal CdSe nanocrystals (NCs) are studied from 6 K to 250 K, before and after annealing. Annealing results in greatly enhanced dark and photocurrent in NC solids, while transmission electron microscopy (TEM) micrographs show that the inter-dot separation decreases. The increased current can be attributed to the enhancement of inter-dot tunneling caused by the decreased separation between NCs and by chemical changes in their organic cap. In addition, the absorption spectra of annealed solids are slightly red-shifted and broadened. These red-shifts may result from the change of the dielectric environment around the NCs. Our measurements also indicate that Coulomb interactions between charges on neighboring NCs play an important role in the tunneling current.Comment: 24 pages,4 figures, 1 tabl

    Electro-hydrodynamics of binary electrolytes driven by modulated surface potentials

    Get PDF
    We study the electro-hydrodynamics of the Debye screening layer that arises in an aqueous binary solution near a planar insulating wall when applying a spatially modulated AC-voltage. Combining this with first order perturbation theory we establish the governing equations for the full non-equilibrium problem and obtain analytic solutions in the bulk for the pressure and velocity fields of the electrolyte and for the electric potential. We find good agreement between the numerics of the full problem and the analytics of the linear theory. Our work provides the theoretical foundations of circuit models discussed in the literature. The non-equilibrium approach also reveals unexpected high-frequency dynamics not predicted by circuit models.Comment: 9 pages including 4 figures. Accepted for PRE

    Frequency response in surface-potential driven electro-hydrodynamics

    Full text link
    Using a Fourier approach we offer a general solution to calculations of slip velocity within the circuit description of the electro-hydrodynamics in a binary electrolyte confined by a plane surface with a modulated surface potential. We consider the case with a spatially constant intrinsic surface capacitance where the net flow rate is in general zero while harmonic rolls as well as time-averaged vortex-like components may exist depending on the spatial symmetry and extension of the surface potential. In general the system displays a resonance behavior at a frequency corresponding to the inverse RC time of the system. Different surface potentials share the common feature that the resonance frequency is inversely proportional to the characteristic length scale of the surface potential. For the asymptotic frequency dependence above resonance we find a 1/omega^2 power law for surface potentials with either an even or an odd symmetry. Below resonance we also find a power law omega^alpha with alpha being positive and dependent of the properties of the surface potential. Comparing a tanh potential and a sech potential we qualitatively find the same slip velocity, but for the below-resonance frequency response the two potentials display different power law asymptotics with alpha=1 and alpha~2, respectively.Comment: 4 pages including 1 figure. Accepted for PR
    • …
    corecore