3,480 research outputs found

    Interaction-induced chaos in a two-electron quantum-dot system

    Full text link
    A quasi-one-dimensional quantum dot containing two interacting electrons is analyzed in search of signatures of chaos. The two-electron energy spectrum is obtained by diagonalization of the Hamiltonian including the exact Coulomb interaction. We find that the level-spacing fluctuations follow closely a Wigner-Dyson distribution, which indicates the emergence of quantum signatures of chaos due to the Coulomb interaction in an otherwise non-chaotic system. In general, the Poincar\'e maps of a classical analog of this quantum mechanical problem can exhibit a mixed classical dynamics. However, for the range of energies involved in the present system, the dynamics is strongly chaotic, aside from small regular regions. The system we study models a realistic semiconductor nanostructure, with electronic parameters typical of gallium arsenide.Comment: 4 pages, 3ps figure

    Deterministically Computing Reduction Numbers of Polynomial Ideals

    Full text link
    We discuss the problem of determining reduction number of a polynomial ideal I in n variables. We present two algorithms based on parametric computations. The first one determines the absolute reduction number of I and requires computation in a polynomial ring with (n-dim(I))dim(I) parameters and n-dim(I) variables. The second one computes via a Grobner system the set of all reduction numbers of the ideal I and thus in particular also its big reduction number. However,it requires computations in a ring with n.dim(I) parameters and n variables.Comment: This new version replaces the earlier version arXiv:1404.1721 and it has been accepted for publication in the proceedings of CASC 2014, Warsaw, Polna

    Spectroscopic characterisation of CARMENES target candidates from FEROS, CAFE and HRS high-resolution spectra

    Get PDF
    CARMENES (Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Echelle Spectrographs) started a new planet survey on M-dwarfs in January this year. The new high-resolution spectrographs are operating in the visible and near-infrared at Calar Alto Observatory. They will perform high-accuracy radial-velocity measurements (goal 1 m s-1) of about 300 M-dwarfs with the aim to detect low-mass planets within habitable zones. We characterised the candidate sample for CARMENES and provide fundamental parameters for these stars in order to constrain planetary properties and understand star-planet systems. Using state-of-the-art model atmospheres (PHOENIX-ACES) and chi2-minimization with a downhill-simplex method we determine effective temperature, surface gravity and metallicity [Fe/H] for high-resolution spectra of around 480 stars of spectral types M0.0-6.5V taken with FEROS, CAFE and HRS. We find good agreement between the models and our observed high-resolution spectra. We show the performance of the algorithm, as well as results, parameter and spectral type distributions for the CARMENES candidate sample, which is used to define the CARMENES target sample. We also present first preliminary results obtained from CARMENES spectra

    Fabrication of integrated planar gunn diode and micro-cooler on GaAs substrate

    Get PDF
    We demonstrate fabrication of an integrated micro cooler with the planar Gunn diode and characterise its performance. First experimental results have shown a small cooling at the surface of the micro cooler. This is first demonstration of an integrated micro-cooler with a planar Gunn diode

    Planar gunn diode characterisation and resonators elements to realise oscillator circuits

    Get PDF
    The paper describes the planar Gunn diode, which is well suited to providing milli-metric and tera hertz sources using microwave monolithic integrated circuit (MMIC) technologies. Different planar Gunn electrode geometries are described along with DC, RF and thermal characterisation. To realize the planar high frequency sources there is requirement for high frequency planar resonators, the paper will describe both the radial and new diamond shaped geometries

    The CARMENES search for exoplanets around M dwarfs - Photospheric parameters of target stars from high-resolution spectroscopy

    Full text link
    The new CARMENES instrument comprises two high-resolution and high-stability spectrographs that are used to search for habitable planets around M dwarfs in the visible and near-infrared regime via the Doppler technique. Characterising our target sample is important for constraining the physical properties of any planetary systems that are detected. The aim of this paper is to determine the fundamental stellar parameters of the CARMENES M-dwarf target sample from high-resolution spectra observed with CARMENES. We also include several M-dwarf spectra observed with other high-resolution spectrographs, that is CAFE, FEROS, and HRS, for completeness. We used a {chi}^2 method to derive the stellar parameters effective temperature T_eff, surface gravity log g, and metallicity [Fe/H] of the target stars by fitting the most recent version of the PHOENIX-ACES models to high-resolution spectroscopic data. These stellar atmosphere models incorporate a new equation of state to describe spectral features of low-temperature stellar atmospheres. Since T_eff, log g, and [Fe/H] show degeneracies, the surface gravity is determined independently using stellar evolutionary models. We derive the stellar parameters for a total of 300 stars. The fits achieve very good agreement between the PHOENIX models and observed spectra. We estimate that our method provides parameters with uncertainties of {sigma} T_eff = 51 K, {sigma} log g = 0.07, and {sigma} [Fe/H] = 0.16, and show that atmosphere models for low-mass stars have significantly improved in the last years. Our work also provides an independent test of the new PHOENIX-ACES models, and a comparison for other methods using low-resolution spectra. In particular, our effective temperatures agree well with literature values, while metallicities determined with our method exhibit a larger spread when compared to literature results

    A semiquantal approach to finite systems of interacting particles

    Full text link
    A novel approach is suggested for the statistical description of quantum systems of interacting particles. The key point of this approach is that a typical eigenstate in the energy representation (shape of eigenstates, SE) has a well defined classical analog which can be easily obtained from the classical equations of motion. Therefore, the occupation numbers for single-particle states can be represented as a convolution of the classical SE with the quantum occupation number operator for non-interacting particles. The latter takes into account the wavefunctions symmetry and depends on the unperturbed energy spectrum only. As a result, the distribution of occupation numbers nsn_s can be numerically found for a very large number of interacting particles. Using the model of interacting spins we demonstrate that this approach gives a correct description of nsn_s even in a deep quantum region with few single-particle orbitals.Comment: 4 pages, 2 figure

    CARMENES input catalogue of M dwarfs. I. Low-resolution spectroscopy with CAFOS

    Get PDF
    Context. CARMENES is a stabilised, high-resolution, double-channel spectrograph at the 3.5 m Calar Alto telescope. It is optimally designed for radial-velocity surveys of M dwarfs with potentially habitable Earth-mass planets. Aims. We prepare a list of the brightest, single M dwarfs in each spectral subtype observable from the northern hemisphere, from which we will select the best planet-hunting targets for CARMENES. Methods. In this first paper on the preparation of our input catalogue, we compiled a large amount of public data and collected low-resolution optical spectroscopy with CAFOS at the 2.2 m Calar Alto telescope for 753 stars. We derived accurate spectral types using a dense grid of standard stars, a double least-squares minimisation technique, and 31 spectral indices previously defined by other authors. Additionally, we quantified surface gravity, metallicity, and chromospheric activity for all the stars in our sample. Results. We calculated spectral types for all 753 stars, of which 305 are new and 448 are revised. We measured pseudo-equivalent widths of Halpha for all the stars in our sample, concluded that chromospheric activity does not affect spectral typing from our indices, and tabulated 49 stars that had been reported to be young stars in open clusters, moving groups, and stellar associations. Of the 753 stars, two are new subdwarf candidates, three are T Tauri stars, 25 are giants, 44 are K dwarfs, and 679 are M dwarfs. Many of the 261 investigated dwarfs in the range M4.0-8.0 V are among the brightest stars known in their spectral subtype. Conclusions. This collection of low-resolution spectroscopic data serves as a candidate target list for the CARMENES survey and can be highly valuable for other radial-velocity surveys of M dwarfs and for studies of cool dwarfs in the solar neighbourhood.Comment: A&A, in pres

    Observational Constraints to the Evolution of Massive Stars

    Full text link
    We consider some aspects of the evolution of massive stars which can only be elucidated by means of "indirect" observations, i.e. measurements of the effects of massive stars on their environments. We discuss in detail the early evolution of massive stars formed in high metallicity regions as inferred from studies of HII regions in external galaxies.Comment: 6 pages, 1 figure; Invited Paper presented at the Roma-Trieste Workshop 1999 "The Chemical Evolution of the Milky Way: Stars versus Clusters", Vulcano Island (ME, Italy), 20-24 September, 1999, eds. F. Giovannelli & F. Matteucci, Kluwer-Holland (in press
    • …
    corecore