164 research outputs found

    Triplet pairing due to spin-orbit-assisted electron-phonon coupling

    Get PDF
    We propose a microscopic mechanism for triplet pairing due to spin-orbit-assisted electron interaction with optical phonons in a crystal with a complex unit cell. Using two examples of electrons with symmetric Fermi surfaces in crystals with either a cubic or a layered square lattice, we show that spin-orbit-assisted electron-phonon coupling can, indeed, generate triplet pairing and that, in each case, it predetermines the tensor structure of a p-wave order parameter

    Semiclassical theory of a quantum pump

    Full text link
    In a quantum charge pump, the periodic variation of two parameters that affect the phase of the electronic wavefunction causes the flow of a direct current. The operating mechanism of a quantum pump is based on quantum interference, the phases of interfering amplitudes being modulated by the external parameters. In a ballistic quantum dot, there is a minimum time before which quantum interference can not occur: the Ehrenfest time. Here we calculate the current pumped through a ballistic quantum dot when the Ehrenfest time is comparable to the mean dwell time. Remarkably, we find that the pumped current has a component that is not suppressed if the Ehrenfest time is much larger than the mean dwell time.Comment: 14 pages, 8 figures. Revised version, minor change

    Spontaneous symmetry breaking and Lifshitz transition in bilayer graphene

    Full text link
    We derive the renormalization group equations describing all the short-range interactions in bilayer graphene allowed by symmetry and the long range Coulomb interaction. For certain range of parameters, we predict the first order phase transition to the uniaxially deformed gapless state accompanied by the change of the topology of the electron spectrum.Comment: 4 pages, 3 figure

    Universal Conductance and Conductivity at Critical Points in Integer Quantum Hall Systems

    Full text link
    The sample averaged longitudinal two-terminal conductance and the respective Kubo-conductivity are calculated at quantum critical points in the integer quantum Hall regime. In the limit of large system size, both transport quantities are found to be the same within numerical uncertainty in the lowest Landau band, 0.60±0.02e2/h0.60\pm 0.02 e^2/h and 0.58±0.03e2/h0.58\pm 0.03 e^2/h, respectively. In the 2nd lowest Landau band, a critical conductance 0.61±0.03e2/h0.61\pm 0.03 e^2/h is obtained which indeed supports the notion of universality. However, these numbers are significantly at variance with the hitherto commonly believed value 1/2e2/h1/2 e^2/h. We argue that this difference is due to the multifractal structure of critical wavefunctions, a property that should generically show up in the conductance at quantum critical points.Comment: 4 pages, 3 figure

    A new electromagnetic mode in graphene

    Full text link
    A new, weakly damped, {\em transverse} electromagnetic mode is predicted in graphene. The mode frequency ω\omega lies in the window 1.667<ω/μ<21.667<\hbar\omega/\mu<2, where μ\mu is the chemical potential, and can be tuned from radiowaves to the infrared by changing the density of charge carriers through a gate voltage.Comment: 5 pages, 4 figure

    Photovoltaic Current Response of Mesoscopic Conductors to Quantized Cavity Modes

    Full text link
    We extend the analysis of the effects of electromagnetic (EM) fields on mesoscopic conductors to include the effects of field quantization, motivated by recent experiments on circuit QED. We show that in general there is a photovoltaic (PV) current induced by quantized cavity modes at zero bias across the conductor. This current depends on the average photon occupation number and vanishes identically when it is equal to the average number of thermal electron-hole pairs. We analyze in detail the case of a chaotic quantum dot at temperature T_e in contact with a thermal EM field at temperature T_f, calculating the RMS size of the PV current as a function of the temperature difference, finding an effect ~pA.Comment: 4 pages, 2 figure

    Orbital effect of in-plane magnetic field on quantum transport in chaotic lateral dots

    Full text link
    We show how the in-plane magnetic field, which breaks time-reversal and rotational symmetries of the orbital motion of electrons in a heterostructure due to the momentum-dependent inter-subband mixing, affects weak localisation correction to conductance of a large-area chaotic lateral quantum dot and parameteric dependences of universal conductance fluctuations in it.Comment: 4 pages with a figur

    Correlation-function spectroscopy of inelastic lifetime in heavily doped GaAs heterostructures

    Get PDF
    Measurements of resonant tunneling through a localized impurity state are used to probe fluctuations in the local density of states of heavily doped GaAs. The measured differential conductance is analyzed in terms of correlation functions with respect to voltage. A qualitative picture based on the scaling theory of Thouless is developed to relate the observed fluctuations to the statistics of single particle wavefunctions. In a quantitative theory correlation functions are calculated. By comparing the experimental and theoretical correlation functions the effective dimensionality of the emitter is analyzed and the dependence of the inelastic lifetime on energy is extracted.Comment: 41 pages, 14 figure

    Fast relaxation of photo-excited carriers in 2-D transition metal dichalcogenides

    Get PDF
    We predict a fast relaxation of photo-excited carriers in monolayer transition metal dichalcogenides, which is mediated by the emission of longitudinal optical (LO) and homopolar (HP) phonons. By evaluating Born effective charges for MoS2, MoSe2, WS2, and WSe2, we find that, due to the polar coupling of electrons with LO phonons, and the HP phonons lattice deformation potential, the cooling times for hot electrons and holes from excitation energies of several hundred meV are at ps-scale

    Spectral features due to inter-Landau-level transitions in the Raman spectrum of bilayer graphene

    Get PDF
    We investigate the contribution of the low-energy electronic excitations towards the Raman spectrum of bilayer graphene for the incoming photon energy Omega >> 1eV. Starting with the four-band tight-binding model, we derive an effective scattering amplitude that can be incorporated into the commonly used two-band approximation. Due to the influence of the high-energy bands, this effective scattering amplitude is different from the contact interaction amplitude obtained within the two-band model alone. We then calculate the spectral density of the inelastic light scattering accompanied by the excitation of electron-hole pairs in bilayer graphene. In the absence of a magnetic field, due to the parabolic dispersion of the low-energy bands in a bilayer crystal, this contribution is constant and in doped structures has a threshold at twice the Fermi energy. In an external magnetic field, the dominant Raman-active modes are the n_{-} to n_{+} inter-Landau-level transitions with crossed polarisation of in/out photons. We estimate the quantum efficiency of a single n_{-} to n_{+} transition in the magnetic field of 10T as I_{n_{-} to n_{+}}~10^{-12}.Comment: 7 pages, 3 figures, expanded version published in PR
    corecore