44 research outputs found

    Induction of Interferon-Stimulated Genes by Chlamydia pneumoniae in Fibroblasts Is Mediated by Intracellular Nucleotide-Sensing Receptors

    Get PDF
    BACKGROUND: Recognition of microorganisms by the innate immune system is mediated by pattern recognition receptors, including Toll-like receptors and cytoplasmic RIG-I-like receptors. Chlamydia, which include several human pathogenic species, are obligate intracellular gram-negative bacteria that replicate in cytoplasmic vacuoles. The infection triggers a host response contributing to both bacterial clearance and tissue damage. For instance, type I interferons (IFN)s have been demonstrated to exacerbate the course of Chlamydial lung infections in mice. METHODS/PRINCIPAL FINDINGS: Here we show that Chlamydia pneumoniae induces expression of IFN-stimulated genes (ISG)s dependent on recognition by nucleotide-sensing Toll-like receptors and RIG-I-like receptors, localized in endosomes and the cytoplasm, respectively. The ISG response was induced with a delayed kinetics, compared to virus infections, and was dependent on bacterial replication and the bacterial type III secretion system (T3SS). CONCLUSIONS/SIGNIFICANCE: Activation of the IFN response during C. pneumoniae infection is mediated by intracellular nucleotide-sensing PRRs, which operate through a mechanism dependent on the bacterial T3SS. Strategies to inhibit the chlamydial T3SS may be used to limit the detrimental effects of the type I IFN system in the host response to Chlamydia infection

    Chlamydial Pre-Infection Protects From Subsequent Herpes Simplex Virus-2 Challenge in a Murine Vaginal Super-Infection Model

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Chlamydia trachomatis and Herpes Simplex Virus-2 (HSV-2) genital tract co-infections have been reported in humans and studied in vitro but the clinical consequences are unknown. Limited epidemiologic evidence suggests that these co-infections could be more severe than single infections of either pathogen, but the host-pathogen interactions during co-infection remain uncharacterized. To determine whether disease progression and/or pathogen shedding differs between singly-infected and super-infected animals, we developed an in vivo super-infection model in which female BALB/c mice were vaginally infected with Chlamydia muridarum (Cm) followed later by HSV-2. Pre-infection with Chlamydia 3 or 9 days prior to HSV-2 super-infection conferred significant protection from HSV-2-induced neurologic disease and significantly reduced viral recovery compared to HSV-2 singlyinfected controls. Neither protection from mortality nor reduced viral recovery were observed when mice were i) super-infected with HSV-2 on day 27 post Cm; ii) infected with UV-irradiated Cm and super-infected with HSV-2; or iii) azithromycin-treated prior to HSV-2 super-infection. Therefore, protection from HSV-2-induced disease requires active infection with viable chlamydiae and is not observed after chlamydial shedding ceases, either naturally or due to antibiotic treatment. Thus, Chlamydia-induced protection is transient and requires the continued presence of chlamydiae or their components. These data demonstrate that chlamydial pre-infection can alter progression of subsequent HSV-2 infection, with implications for HSV-2 transmission from co-infected humans

    MyD88 and STING Signaling Pathways Are Required for IRF3-Mediated IFN-β Induction in Response to Brucella abortus Infection

    Get PDF
    Type I interferons (IFNs) are cytokines that orchestrate diverse immune responses to viral and bacterial infections. Although typically considered to be most important molecules in response to viruses, type I IFNs are also induced by most, if not all, bacterial pathogens. In this study, we addressed the role of type I IFN signaling during Brucella abortus infection, a facultative intracellular bacterial pathogen that causes abortion in domestic animals and undulant fever in humans. Herein, we have shown that B. abortus induced IFN-β in macrophages and splenocytes. Further, IFN-β induction by Brucella was mediated by IRF3 signaling pathway and activates IFN-stimulated genes via STAT1 phosphorylation. In addition, IFN-β expression induced by Brucella is independent of TLRs and TRIF signaling but MyD88-dependent, a pathway not yet described for Gram-negative bacteria. Furthermore, we have identified Brucella DNA as the major bacterial component to induce IFN-β and our study revealed that this molecule operates through a mechanism dependent on RNA polymerase III to be sensed probably by an unknown receptor via the adaptor molecule STING. Finally, we have demonstrated that IFN-αβR KO mice are more resistant to infection suggesting that type I IFN signaling is detrimental to host control of Brucella. This resistance phenotype is accompanied by increased IFN-γ and NO production by IFN-αβR KO spleen cells and reduced apoptosis

    Rac1 Regulates the NLRP3 Inflammasome Which Mediates IL-1beta Production in Chlamydophila pneumoniae Infected Human Mononuclear Cells

    Get PDF
    Chlamydophila pneumoniae causes acute respiratory tract infections and has been associated with development of asthma and atherosclerosis. The production of IL-1β, a key mediator of acute and chronic inflammation, is regulated on a transcriptional level and additionally on a posttranslational level by inflammasomes. In the present study we show that C. pneumoniae-infected human mononuclear cells produce IL-1β protein depending on an inflammasome consisting of NLRP3, the adapter protein ASC and caspase-1. We further found that the small GTPase Rac1 is activated in C. pneumoniae-infected cells. Importantly, studies with specific inhibitors as well as siRNA show that Rac1 regulates inflammasome activation in C. pneumoniae-infected cells. In conclusion, C. pneumoniae infection of mononuclear cells stimulates IL-1β production dependent on a NLRP3 inflammasome-mediated processing of proIL-1β which is controlled by Rac1

    Molecular mechanisms and cellular functions of cGAS-STING signalling

    Get PDF
    The cGAS–STING signalling axis, comprising the synthase for the second messenger cyclic GMP–AMP (cGAS) and the cyclic GMP–AMP receptor stimulator of interferon genes (STING), detects pathogenic DNA to trigger an innate immune reaction involving a strong type I interferon response against microbial infections. Notably however, besides sensing microbial DNA, the DNA sensor cGAS can also be activated by endogenous DNA, including extranuclear chromatin resulting from genotoxic stress and DNA released from mitochondria, placing cGAS–STING as an important axis in autoimmunity, sterile inflammatory responses and cellular senescence. Initial models assumed that co-localization of cGAS and DNA in the cytosol defines the specificity of the pathway for non-self, but recent work revealed that cGAS is also present in the nucleus and at the plasma membrane, and such subcellular compartmentalization was linked to signalling specificity of cGAS. Further confounding the simple view of cGAS–STING signalling as a response mechanism to infectious agents, both cGAS and STING were shown to have additional functions, independent of interferon response. These involve non-catalytic roles of cGAS in regulating DNA repair and signalling via STING to NF-κB and MAPK as well as STING-mediated induction of autophagy and lysosome- dependent cell death. We have also learnt that cGAS dimers can multimerize and undergo liquid–liquid phase separation to form biomolecular condensates that could importantly regulate cGAS activation. Here, we review the molecular mechanisms and cellular functions underlying cGAS–STING activation and signalling, particularly highlighting the newly emerging diversity of this signalling pathway and discussing how the specificity towards normal, damage-induced and infection-associated DNA could be achieved

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Regulation of bovine CYP3A28 promoter by pregnane X receptor (PXR) and constitutive androstane receptor (CAR).

    No full text
    INTRODUCTION The regulation of cytochrome P450 3A (CYP3A) has been extensively studied in human liver. In cattle, some information on the expression and modulation of CYP3As are now available, but molecular mechanisms involved in basal and xenobiotic- mediated gene regulation are still unknown. In this study, selected transcription factor binding sites were studied for their role in the basal and nuclear receptor-driven trans-activation of CYP3A28 promoter. MATERIALS AND METHODS Putative binding sites for transcription factors were predicted within the CYP3A28 promoter region (~10 kbp) through specific software. Fragments of the CYP3A28 promoter were amplified from bovine liver gDNA and cloned into pGL4.10 vector. Bovine nuclear receptor (bPXR, bCAR and bRXRa) fulllength cDNAs were amplified and inserted into pCI-neo expression vector. Deletion of ER6, HNF-1 and HNF-4 cis-elements in the proximal promoter (PP) construct, and mutagenesis of both ER6 and HNF-4 binding elements within the PP region, and of DR5 within the Fragment 3 (F3) were performed through inverse PCR and according to Fang et al. (2012), respectively. To identify the most important regions for gene activation, cotransfection studies in HepG2 cells were performed using all the promoter constructs, bPXR and its agonist SR12813, or constitutively active bCAR. To assay the role of specific binding sites on CYP3A28 regulation, C3A cells were then co-transfected with deleted or mutated plasmids, bPXR and SR12813 or rifampicin (RIF), and bCAR. Human 3A4-XREM- luc and PBREM-tk-luc were used as positive controls. RESULTS AND CONCLUSIONS CYP3A28 promoter screening revealed PP and PP-F3 as the most important elements for bPXR and bCAR activation. 3A4-XREMluc, the PP and PP-F3 constructs were significantly activated by bPXR and SR12813 (P < 0.05), but not by RIF. Deletion of ER6, HNF-1 and HNF-4 lead to a significant decrease of PP activation by bPXR and SR12813 (P < 0.01), while the mutated single elements ER6, HNF-4 and DR5 did not. Conversely, only PP-F3 was significantly activated by bCAR (P < 0.05). Thus, CYP3A28 PP contains interaction sites for bPXR trans-activation. ER6 and HNF-1 elements seem to contribute to SR12813 response. F3 fragment is involved in bPXR- and bCAR-mediated CYP3A28 regulation, but additional binding elements, apart from DR5, need to be investigated. ACKNOWLEDGEMENTS Project supported by University of Padova (CPDA109434, 60A08-4783/14)

    Understanding the mechanism of cattle CYP3A: recent advances and remaining problems

    No full text
    Cytochrome P450 3A (CYP3A) has been extensively studied in humans, but its characterization in cattle is still incomplete. Comparatively, bovine CYP3A is a minor contributor to drug metabolism, despite its constitutive expression in liver, gut and other tissues. Several factors influence cattle CYP3A expression and function: species, breed, age, gender, induction and inhibition phenomena that may lead to drug-drug interactions (DDIs). Marker substrates are testosterone, ethylmorphine and macrolides, but luciferin IPA and midazolam have been recently used, too. Three CYP3A isoforms have been identified in cattle liver (CYP3A28, 3A38 and 3A48) but their tissue distribution and substrate specificities are currently unclear. In humans, CYP3A polymorphisms (SNPs) are sources of individual differences in disease risk and treatment response. Sequencing of CYP3A coding regions in Piedmontese cattle revealed 12 SNPs, whose relevance is now under investigation. At present, no data about intron and splicing variant SNPs are available, but some CYP3A28 SNPs have been associated with productive traits. Species-differences exist in CYP3A regulation, and similar data have been reported for cattle. Following sequencing and in silico analysis of CYP3A28 promoter (~10000 bp 5\ub4 upstream), clusters relevant for CYP3A28 proximal promoter transactivation, resembling those known for CYP3A4, have been identified. Functional studies are currently ongoing. Additional studies on cattle CYP3A are needed to: i) set up and validate in vitro tools useful for in-depth molecular studies; ii) clarify expression and regulation phenomena; iii) find out likely relationships with drug transporters; iv) avoid harmful DDIs. Grants: 2009ZE5HJP (MIUR); CPDA109434, 60A08-7517/13 (University of Padua)

    Permeation Peptide Conjugates for In Vivo Molecular Imaging Applications

    No full text
    Rapid and efficient delivery of imaging probes to the cell interior using permeation peptides has enabled novel applications in molecular imaging. Membrane permeant peptides based on the HIV-1 Tat basic domain sequence, GRKKRRQRRR, labeled with fluorophores and fluorescent proteins for optical imaging or with appropriate peptide-based motifs or macrocycles to chelate metals, such as technetium for nuclear scintigraphy and gadolinium for magnetic resonance imaging, have been synthesized. In addition, iron oxide complexes have been functionalized with the Tat basic domain peptides for magnetic resonance imaging applications. Herein we review current applications of permeation peptides in molecular imaging and factors influencing permeation peptide internalization. These diagnostic agents show concentrative cell accumulation and rapid kinetics and display cytosolic and focal nuclear accumulation in human cells. Combining methods, dual-labeled permeation peptides incorporating fluorescein maleimide and chelated technetium have allowed for both qualitative and quantitative analysis of cellular uptake. Imaging studies in mice following intravenous administration of prototypic diagnostic permeation peptides show rapid whole-body distribution allowing for various molecular imaging applications. Strategies to develop permeation peptides into molecular imaging probes have included incorporation of targeting motifs such as molecular beacons or protease cleavable domains that enable selective retention, activatable fluorescence, or targeted transduction. These novel permeation peptide conjugates maintain rapid translocation across cell membranes into intracellular compartments and have the potential for targeted in vivo applications in molecular imaging and combination therapy
    corecore