102 research outputs found

    From PeV to TeV: Astrophysical Neutrinos with Contained Vertices in 10 years of IceCube Data

    Full text link
    The IceCube Neutrino Observatory is a cubic-kilometer Cherenkov detector at the South Pole, designed to study neutrinos of astrophysical origin. We present an analysis of the Medium Energy Starting Events (MESE) sample, a veto-based event selection that selects neutrinos and efficiently rejects a background of cosmic ray-induced muons This is an extension of the High Energy Starting Event (HESE) analysis, which established the existence of high-energy neutrinos of astrophysical origin. The HESE sample is consistent with a single power law spectrum with best-fit index 2.870.19+0.202.87^{+0.20}_{-0.19}, which is softer than complementary IceCube measurements of the astrophysical neutrino spectrum. While HESE is sensitive to neutrinos above 60 TeV, MESE improves the sensitivity to lower energies, down to 1 TeV. In this analysis we use an improved understanding of atmospheric backgrounds in the astrophysical neutrino sample via more accurate modeling of the detector self-veto. A previous measurement with a 2-year MESE dataset had indicated the presence of a possible 30 TeV excess. With 10 years of data, we have a larger sample size to investigate this excess. We will use this event selection to measure the cosmic neutrino energy spectrum over a wide energy range. The flavor ratio of astrophysical neutrinos will also be discussed.Comment: Presented at the 38th International Cosmic Ray Conference (ICRC2023). See arXiv:2307.13047 for all IceCube contribution

    A Quest for PeVatrons Employing Radio Detection of Extensive Air Showers

    Get PDF

    Searches for IceCube Neutrinos Coincident with Gravitational Wave Events

    Full text link
    Searches for neutrinos from gravitational wave events have been performed utilizing the wide energy range of the IceCube Neutrino Observatory. We discuss results from these searches during the third observing run (O3) of the advanced LIGO and Virgo detectors, including a low-latency follow-up of public candidate alert events in O3, an archival search on high-energy track data, and a low-energy search employing IceCube-DeepCore. The dataset of high-energy tracks is mainly sensitive to muon neutrinos, while the low energy dataset is sensitive to neutrinos of all flavors. In all of these searches, we present upper limits on the neutrino flux and isotropic equivalent energy emitted in neutrinos. We also discuss future plans for additional searches, including extending the low-latency follow-up to the next observing run of the LIGO-Virgo-KAGRA detectors (O4) and analysis of gravitational wave (GW) events using a high-energy cascade dataset, which are produced by electron neutrino charged-current interactions and neutral-current interactions from neutrinos of all flavors.Comment: Presented at the 38th International Cosmic Ray Conference (ICRC2023). See arXiv:2307.13047 for all IceCube contribution

    Studies of a muon-based mass sensitive parameter for the IceTop surface array

    Get PDF

    Measuring the Neutrino Cross Section Using 8 years of Upgoing Muon Neutrinos Observed with IceCube

    Get PDF
    The IceCube Neutrino Observatory detects neutrinos at energies orders of magnitude higher than those available to current accelerators. Above 40 TeV, neutrinos traveling through the Earth will be absorbed as they interact via charged current interactions with nuclei, creating a deficit of Earth-crossing neutrinos detected at IceCube. The previous published results showed the cross section to be consistent with Standard Model predictions for 1 year of IceCube data. We present a new analysis that uses 8 years of IceCube data to fit the νμ_{μ} absorption in the Earth, with statistics an order of magnitude better than previous analyses, and with an improved treatment of systematic uncertainties. It will measure the cross section in three energy bins that span the range 1 TeV to 100 PeV. We will present Monte Carlo studies that demonstrate its sensitivity

    Seasonal Variations of the Unfolded Atmospheric Neutrino Spectrum with IceCube

    Get PDF

    Recent Progress in Solar Atmospheric Neutrino Searches with IceCube

    Get PDF
    Cosmic-rays interacting with nucleons in the solar atmosphere produce a cascade of particles that give rise to a flux of high-energy neutrinos and gamma-rays. Fermi has observed this gamma-ray flux; however, the associated neutrino flux has escaped observation. In this contribution, we put forward two strategies to detect these neutrinos, which, if seen, would push forward our understanding of the solar atmosphere and provide a new testing ground of neutrino properties. First, we will extend the previous analysis, which used high-energy through-going muon events collected in the years of maximum solar activity and yielded only flux upper limits, to include data taken during the solar minima from 2018 to 2020. Extending the analysis to the solar minima is important as the gamma-ray data collected during past solar cycles indicates a possible enhancement in the high-energy neutrino flux. Second, we will incorporate sub-TeV events and include contributions from all neutrino flavors. These will improve our analysis sensitivity since the solar atmospheric spectrum is soft and, due to oscillation, contains significant contributions of all neutrino flavors. As we will present in this contribution, these complementary strategies yield a significant improvement in sensitivity, making substantial progress towards observing this flux
    corecore