12,163 research outputs found

    Effective Field Theory Program for Conformal Quantum Anomalies

    Full text link
    The emergence of conformal states is established for any problem involving a domain of scales where the long-range, SO(2,1) conformally invariant interaction is applicable. Whenever a clear-cut separation of ultraviolet and infrared cutoffs is in place, this renormalization mechanism produces binding in the strong-coupling regime. A realization of this phenomenon, in the form of dipole-bound anions, is discussed.Comment: 15 pages. Expanded, with additional calculational details. To be published in Phys. Rev.

    Role of cross helicity in magnetohydrodynamic turbulence

    Full text link
    Strong incompressible three-dimensional magnetohydrodynamic turbulence is investigated by means of high resolution direct numerical simulations. The simulations show that the configuration space is characterized by regions of positive and negative cross-helicity, corresponding to highly aligned or anti-aligned velocity and magnetic field fluctuations, even when the average cross-helicity is zero. To elucidate the role of cross-helicity, the spectra and structure of turbulence are obtained in imbalanced regions where cross-helicity is non-zero. When averaged over regions of positive and negative cross-helicity, the result is consistent with the simulations of balanced turbulence. An analytical explanation for the obtained results is proposed.Comment: 4 pages, 4 figure

    Wormholes in spacetimes with cosmological horizons

    Get PDF
    A generalisation of the asymptotic wormhole boundary condition for the case of spacetimes with a cosmological horizon is proposed. In particular, we consider de Sitter spacetime with small cosmological constant. The wave functions selected by this proposal are exponentially damped in WKB approximation when the scale factor is large but still much smaller than the horizon size. In addition, they only include outgoing gravitational modes in the region beyond the horizon. We argue that these wave functions represent quantum wormholes and compute the local effective interactions induced by them in low-energy field theory. These effective interactions differ from those for flat spacetime in terms that explicitly depend on the cosmological constant.Comment: 10 pages, LaTeX 2.O9, no figure

    Equivalence of the Path Integral for Fermions in Cartesian and Spherical Coordinates

    Full text link
    The path-integral calculation for the free energy of a spin-1/2 Dirac-fermion gas is performed in spherical polar coordinates for a flat spacetime geometry. Its equivalence with the Cartesian-coordinate representation is explicitly established. This evaluation involves a relevant limiting case of the fermionic path integral in a Schwarzschild background, whose near-horizon limit has been shown to be related to black hole thermodynamics.Comment: 16 page

    Supergravity Radiative Effects on Soft Terms and the ÎĽ\mu Term

    Full text link
    We compute quadratically divergent supergravity one-loop effects on soft supersymmetry-breaking parameters and the ÎĽ\mu term in generic hidden sector supergravity models. These effects can significantly modify the matching condition for soft parameters at the Planck scale and also provide several new sources of the ÎĽ\mu term which are naturally of order the weak scale. We also discuss some phenomenological implications of these effects, particularly the violation of the scalar mass universality which may lead to dangerous FCNC phenomena, and apply the results to superstring effective supergravity models.Comment: 12 pages, REVTEX. One reference is adde

    Exploring the randomness of Directed Acyclic Networks

    Get PDF
    The feed-forward relationship naturally observed in time-dependent processes and in a diverse number of real systems -such as some food-webs and electronic and neural wiring- can be described in terms of so-called directed acyclic graphs (DAGs). An important ingredient of the analysis of such networks is a proper comparison of their observed architecture against an ensemble of randomized graphs, thereby quantifying the {\em randomness} of the real systems with respect to suitable null models. This approximation is particularly relevant when the finite size and/or large connectivity of real systems make inadequate a comparison with the predictions obtained from the so-called {\em configuration model}. In this paper we analyze four methods of DAG randomization as defined by the desired combination of topological invariants (directed and undirected degree sequence and component distributions) aimed to be preserved. A highly ordered DAG, called \textit{snake}-graph and a Erd\:os-R\'enyi DAG were used to validate the performance of the algorithms. Finally, three real case studies, namely, the \textit{C. elegans} cell lineage network, a PhD student-advisor network and the Milgram's citation network were analyzed using each randomization method. Results show how the interpretation of degree-degree relations in DAGs respect to their randomized ensembles depend on the topological invariants imposed. In general, real DAGs provide disordered values, lower than the expected by chance when the directedness of the links is not preserved in the randomization process. Conversely, if the direction of the links is conserved throughout the randomization process, disorder indicators are close to the obtained from the null-model ensemble, although some deviations are observed.Comment: 13 pages, 5 figures and 5 table

    Probing leptoquark production at IceCube

    Get PDF
    We emphasize the inelasticity distribution of events detected at the IceCube neutrino telescope as an important tool for revealing new physics. This is possible because the unique energy resolution at this facility allows to separately assign the energy fractions for emergent muons and taus in neutrino interactions. As a particular example, we explore the possibility of probing second and third generation leptoquark parameter space (coupling and mass). We show that production of leptoquarks with masses \agt 250 GeV and diagonal generation couplings of O(1) can be directly tested if the cosmic neutrino flux is at the Waxman-Bahcall level.Comment: Matching version to be published in Phys. Rev.
    • …
    corecore