32,183 research outputs found
Dissipation in a superconducting artificial atom due to a single non-equilibrium quasiparticle
We study a superconducting artificial atom which is represented by a single
Josephson junction or a Josephson junction chain, capacitively coupled to a
coherently driven transmission line, and which contains exactly one residual
quasiparticle (or up to one quasiparticle per island in a chain). We study the
dissipation in the atom induced by the quasiparticle tunneling, taking into
account the quasiparticle heating by the drive. We calculate the transmission
coefficient in the transmission line for drive frequencies near resonance and
show that, when the artificial atom spectrum is nearly harmonic, the intrinsic
quality factor of the resonance increases with the drive power. This
counterintuitive behavior is due to the energy dependence of the quasiparticle
density of states
Formation of matter-wave soliton trains by modulational instability
Nonlinear systems can exhibit a rich set of dynamics that are inherently
sensitive to their initial conditions. One such example is modulational
instability, which is believed to be one of the most prevalent instabilities in
nature. By exploiting a shallow zero-crossing of a Feshbach resonance, we
characterize modulational instability and its role in the formation of
matter-wave soliton trains from a Bose-Einstein condensate. We examine the
universal scaling laws exhibited by the system, and through real-time imaging,
address a long-standing question of whether the solitons in trains are created
with effectively repulsive nearest neighbor interactions, or rather, evolve
into such a structure
Out of equilibrium electronic transport properties of a misfit cobaltite thin film
We report on transport measurements in a thin film of the 2D misfit Cobaltite
. Dc magnetoresistance measurements obey the modified
variable range hopping law expected for a soft Coulomb gap. When the sample is
cooled down, we observe large telegraphic-like fluctuations. At low
temperature, these slow fluctuations have non Gaussian statistics, and are
stable under a large magnetic field. These results suggest that the low
temperature state is a glassy electronic state. Resistance relaxation and
memory effects of pure magnetic origin are also observed, but without aging
phenomena. This indicates that these magnetic effects are not glassy-like and
are not directly coupled to the electronic part.Comment: accepted in Phys Rev B, Brief report
Model for Anisotropic Directed Percolation
We propose a simulation model to study the properties of directed percolation
in two-dimensional (2D) anisotropic random media. The degree of anisotropy in
the model is given by the ratio between the axes of a semi-ellipse
enclosing the bonds that promote percolation in one direction. At percolation,
this simple model shows that the average number of bonds per site in 2D is an
invariant equal to 2.8 independently of . This result suggests that
Sinai's theorem proposed originally for isotropic percolation is also valid for
anisotropic directed percolation problems. The new invariant also yields a
constant fractal dimension for all , which is the same
value found in isotropic directed percolation (i.e., ).Comment: RevTeX, 9 pages, 3 figures. To appear in Phys.Rev.
Modeling of the Reservoir Effect on Electromigration Lifetime
Electromigration behaviour in W-plug/metal stripe structures is different from conventional metal-strip structures because there is a blocking boundary formed by the immobile W-plug in the contact/via. Electromigration failures occur more readily close to the W-plug than in metal-strip structures because metal ions are forced away from the contacts/vias by electric current, blocking the contacts/vias area. Several works have reported electromigration lifetime of multiple level interconnects to be influenced by the presence of a reservoir around the contacts/vias. Reservoirs are metal parts that are not or are hardly conducting current that act as a source to provide atoms for the area around the blocking boundary where the atoms migrate away due to the electric current. Interconnect lifetime can be prolonged by using the reservoirs, called the ¿reservoir effect¿. 2D simulation of the effects of reservoirs has been performed. The stress build-up during electromigration in the contact area can be simulated for several configurations, separating the effects of overlap, total reservoir area, the reservoir layout directions (vertical and horizontal), number of contacts/vias and contact/via placement. It is very useful for IC design rules to estimate which parameters are important for IC reliability. In this study, we considered the critical stress that the metal line can sustain before void formation as failure criterion. The failure time is determined by the time to reach the critical stres
NC pi0 Production in the MiniBooNE Antineutrino Data
The single largest background to future numubar to nuebar (numu to nue)
oscillation searches is neutral current pi0 production. MiniBooNE, which began
taking antineutrino data in January 2006, has the world's largest sample of
pi0's produced by antineutrinos in the 1 GeV energy range. These neutral pions
are primarily produced through the delta resonance but can also be created
through "coherent production." The latter process is the coherent sum of
glancing scatters of (anti)neutrinos off a neutron or proton, in which the
nucleus is kept intact but a pi0 is created. Current analysis of NC pi0
production in the MiniBooNE antineutrino data will be discussed.Comment: 4 pages, including 5 figures. Proceedings of the 5th International
Workshop on Neutrino-Nucleus Interactions in the Few-GeV Region (NuInt07),
Batavia, Illinois, 30 May - 3 Jun 200
- …