213 research outputs found

    Retinal inner nuclear layer volume reflects inflammatory disease activity in multiple sclerosis; a longitudinal OCT study.

    Get PDF
    BACKGROUNG: The association of peripapillary retinal nerve fibre layer (pRNFL) and ganglion cell-inner plexiform layer (GCIPL) thickness with neurodegeneration in multiple sclerosis (MS) is well established. The relationship of the adjoining inner nuclear layer (INL) with inflammatory disease activity is less well understood. OBJECTIVE: The objective of this paper is to investigate the relationship of INL volume changes with inflammatory disease activity in MS. METHODS: In this longitudinal, multi-centre study, optical coherence tomography (OCT) and clinical data (disability status, relapses and MS optic neuritis (MSON)) were collected in 785 patients with MS (68.3% female) and 92 healthy controls (63.4% female) from 11 MS centres between 2010 and 2017 and pooled retrospectively. Data on pRNFL, GCIPL and INL were obtained at each centre. RESULTS: There was a significant increase in INL volume in eyes with new MSON during the study (N = 61/1562, β = 0.01 mm(3), p < .001). Clinical relapses (other than MSON) were significantly associated with increased INL volume (β = 0.005, p = .025). INL volume was independent of disease progression (β = 0.002 mm(3), p = .474). CONCLUSION: Our data demonstrate that an increase in INL volume is associated with MSON and the occurrence of clinical relapses. Therefore, INL volume changes may be useful as an outcome marker for inflammatory disease activity in MSON and MS treatment trials

    BMP axis in cancer cachexia

    Get PDF
    BACKGROUND Cancer cachexia is a devastating metabolic syndrome characterized by systemic inflammation and massive muscle and adipose tissue wasting. Although cancer cachexia is responsible for about 25% of cancer deaths, no effective therapies are available, and the underlying mechanisms have not been fully elucidated. Its occurrence complicates patients’ management, reduces tolerance to treatments and negatively affects patient quality of life. Muscle wasting, mainly due to increased protein breakdown rates, is one of the most prominent features of cachexia. Blocking muscle loss in cachexia mouse models dramatically prolongs survival even of animals in which tumor growth is not inhibited. Recent observations showed that bone morphogenetic protein (BMP) signaling, acting through Smad1, Smad5 and Smad8 (Smad1/5/8), is a master regulator of muscle homeostasis. BMP-Smad1/5/8 axis negatively regulates a novel ubiquitin ligase (MUSA1) required for muscle loss induced by denervation. MATERIALS AND METHODS First aim of the present work was to test if alterations of the BMP signaling pathway occur in cancer-induced muscle wasting in patients. For this purpose we checked the state of activation of the BMP pathway in muscle of cachectic vs non–cachectic patients affected by colon, pancreatic and esophagus cancer and in control subjects. We checked by Western Blot the phosphorylation levels of Smad1/5/8 and of Smad3 and by quantitative Real-Time PCR (qRT-PCR) the expression levels of different atrophy-related genes The second aim was to evaluate the degree of muscle atrophy and distribution of muscle fibers in patients and control subjects using morphometric and immunohistochemical analyses. We also performed analysis on distribution of NCAM positive muscle fibers to assess the effect of denervation on muscle tropism. RESULTS From December 2014 we collected 95 rectus abdominis muscle biopsies of cancer patients and 11 from control subjects. In line with the results we obtained in C26 mice model (a well-established cancer cachexia experimental model) Smad1/5/8 phosphorylation, readout of the state of activation of the BMP pathway, was nearly completely abrogated in the muscles of cancer cachectic patients compared to cancer non-cachectic ones. Interestingly, the level of phosphorylation of Smad3 was not significantly affected suggesting specific effects of cancer growth on BMP pathway. The expression levels of different atrophy-related genes including MUSA1 were induced in the cachectic muscles. Interestingly, several BMP related genes are also changing the expression during cancer growth. We also found a correlation between suppression of BMP pathway, expression of atrophy related genes and Noggin, known to block BMP pathway. Morphometric analysis shown that patients with cancer cachexia have smaller myofiber diameter (in particular fast type fibers) in comparison to age-matched controls. In skeletal muscle from cancer patients (either cachectic or non-cachectic) we detected a prevalence of flat shaped, angulated and severely atrophic myofibers (i.e. morphological features of denervated myofibers), big fiber-type grouping (i.e. typical hallmark of denervation/reinnervation events) and numerous NCAM positive myofibers (i.e. specific marker of denervation). CONCLUSIONS These findings are consistent with the hypothesis that BMP inhibition is permissive to cachexia onset. Since the reactivation of the BMP-dependent signaling and MUSA1 suppression was sufficient to prevent tumor-induced muscle atrophy in our C26 mouse model (data not shown), the present data suggest that the BMP axis can be an effective target for therapeutic approaches to counteract cachexia also in cancer patients. The results of morphometric and immunohistochemical studies collected till now may suggest that denervation contributes to myofiber atrophy in cancer cachexia

    Involvement of NMDA receptor complex in the anxiolytic-like effects of chlordiazepoxide in mice

    Get PDF
    In the present study, we demonstrated that low, ineffective doses of N-methyl-d-aspartic acid (NMDA) receptor antagonists [competitive NMDA antagonist, CGP 37849, at 0.312 mg/kg intraperitoneally (i.p.), antagonist of the glycineB sites, L-701,324, at 2 mg/kg i.p., partial agonist of glycineB sites, d-cycloserine, at 2.5 mg/kg i.p.] administered jointly with an ineffective dose of the benzodiazepine, chlordiazepoxide (CDP, 2.5 mg/kg i.p.), significantly increased the percentage of time spent in the open arms of the elevated plus-maze (index of anxiolytic effect). Furthermore, CDP-induced anxiolytic-like activity (5 mg/kg i.p.) was antagonized by NMDA (75 mg/kg i.p.) and by an agonist of glycineB sites of the NMDA receptor complex, d-serine [100 nmol/mouse intracerebroventricularly (i.c.v.)]. The present study showed a positive interaction between γ-aminobutyric acid (GABA) and glutamate neurotransmission in the anxiolytic-like activity in the elevated plus-maze test in mice and this activity seems to particularly involve the NMDA receptors

    Nociceptors: a phylogenetic view

    Get PDF
    The ability to react to environmental change is crucial for the survival of an organism and an essential prerequisite is the capacity to detect and respond to aversive stimuli. The importance of having an inbuilt “detect and protect” system is illustrated by the fact that most animals have dedicated sensory afferents which respond to noxious stimuli called nociceptors. Should injury occur there is often sensitization, whereby increased nociceptor sensitivity and/or plasticity of nociceptor-related neural circuits acts as a protection mechanism for the afflicted body part. Studying nociception and nociceptors in different model organisms has demonstrated that there are similarities from invertebrates right through to humans. The development of technology to genetically manipulate organisms, especially mice, has led to an understanding of some of the key molecular players in nociceptor function. This review will focus on what is known about nociceptors throughout the Animalia kingdom and what similarities exist across phyla; especially at the molecular level of ion channels

    Partitioning the Heritability of Tourette Syndrome and Obsessive Compulsive Disorder Reveals Differences in Genetic Architecture

    Get PDF

    Partitioning the Heritability of Tourette Syndrome and Obsessive Compulsive Disorder Reveals Differences in Genetic Architecture

    Get PDF
    The direct estimation of heritability from genome-wide common variant data as implemented in the program Genome-wide Complex Trait Analysis (GCTA) has provided a means to quantify heritability attributable to all interrogated variants. We have quantified the variance in liability to disease explained
    corecore