41 research outputs found
Effect of curing time on the microstructure and mechanical strength development of alkali activated binders based on vitreous calcium aluminosilicate (VCAS)
The aim of this paper is to study the influence of curing time on the microstructure and mechanical strength development of alkali activated binders based on vitreous calcium aluminosilicate (VCAS). Mechanical strength of alkali activated mortars cured at 65 °C was assessed for different curing times (4¿168 h) using 10 molal NaOH solution as alkaline activator. Compressive strength values around 77 MPa after three days of curing at 65 °C were obtained. 1·68 MPa/h compressive strength gain rate was observed in the first 12 h, decreasing to 0·95 MPa/h for the period of 12¿72 h. The progress of geopolymeric reaction was monitored by means of TGA and, electrical conductivity and pH measurements in an aqueous suspension. Significant decrease in pH and electrical conductivity were observed in the 4¿72 h period, demonstrating the geopolymerization process. Furthermore, SEM images showed an important amount of (N, C)ASH gel and low porosity of the developed matrix.To the Ministerio de Ciencia e Innovacion (MICINN) of the Spanish Government (BIA2011-26947) and also to FEDER for funding and to Vitrominerals company for supplying VCAS samples.Mitsuuchi Tashima, M.; Soriano Martínez, L.; Borrachero Rosado, MV.; Monzó Balbuena, JM.; Paya Bernabeu, JJ. (2013). Effect of curing time on the microstructure and mechanical strength development of alkali activated binders based on vitreous calcium aluminosilicate (VCAS). Bulletin of Materials Science. 36:245-249. https://doi.org/10.1007/s12034-013-0466-zS24524936Bernal S A, Gutiérrez R M, Pedraza A L, Provis J L, Rodriguez E D and Delvasto S 2011 Cem. Concr. Res. 41 1Criado M, Fernández-Jiménez A, Sobrados I, Palomo A and Sanz J 2011 J. Eur. Ceram. Soc. avaiable onlineDavidovits J 2008 Geopolymer chemistry and applications Institute Geopolymere, Saint-Quentin, FranceDuxson P, Fernández-Jiménez A, Provis J L, Lukey G C, Palomo A and van Deventer J S J 2007 J. Mater. Sci. 47 2917Fernández-Jiménez A, Palomo A and Criado M 2005 Cem. Concr. Res. 35 1204Hossain A B, Shrazi S A, Persun J and Neithalath N 2008 J. Transp. Res. Board 2070 32Komnitsas K and Zaharaki D 2007 Miner. Eng. 20 1261Lampris C, Lupo R and Cheeseman C R 2009 Waste Manage. 29 368Lin T, Jia D, Wang M, He P and Liang D 2009 Bull. Mater. Sci. 32 77Lloyd R R, Provis J L and van Deventer J S J 2009 J. Mater. Sci. 44 608Marín-López C, Reyes Araiza J L, Manzano-Ramírez A, Rubio Avalos J C, Perez-Bueno J J, Muñiz-Villareal M S, Ventura-Ramos E and Vorobiev Y 2009 Inorg. Mater. 45 1429Najafi Kani E, Allahverdi A and Provis J L 2012 Cem. Concr. Comp. 34 25Neithalath N, Persun J and Hossain A 2009 Cem. Concr. Res. 39 473Pacheco-Torgal F, Castro-Gomes J and Jalali S 2008a Constr. Build. Mater. 22 1315Pacheco-Torgal F, Castro-Gomex J and Jalali S 2008b Constr. Build. Mater. 22 1201Pacheco-Torgal F, Castro-Gomex J and Jalali S 2008c Constr. Build. Mater. 22 2212Payá J, Borrachero M V, Monzó J, Soriano L and Tashima M M 2012 Mater. Lett. 74 223Puertas F, Martínez-Ramírez S, Alonso S and Vázquez T 2000 Cem. Concr. Res. 30 1625Puertas F, Barba A, Gazulla M F, Gómez M P, Palacios M and Martínez-Ramírez S 2006 Mater. Construc. 56 73Reig L, Tashima M M, Borrachero M V, Monzó J and Payá J 2010 II Simposio aprovechamiento de residuos agro-industriales como fuente sostenible de materiales de construcción p. 83Rodriguez E D, Bernal S A, Provis J, Payá J, Monzó J and Borrachero M V 2012 Cem. Concr. Comp. (submitted)Tashima M M, Borrachero M V, Monzó J, Soriano L and Payá J 2009 COMATCOMP09 p.421Tashima M M, Akasaki J L, Castaldelli V N, Soriano L, Monzó J, Payá J and Borrachero M V 2012 Mater. Lett. 80 50Xu H and van Deventer J S J 2000 Int. J. Miner. Process. 59 247Yao X, Zhang Z, Zhu H and Chen Y 2009 Thermochim. Acta 493 49Zivica V 2004 Bull. Mater. Sci. 27 179Zivica V, Balkovic S and Drabik M 2011 Constr. Build. Mater. 25 220
Investigation on the combined interactin of sulfate and acidic attack on concretes exposed to aggressive environments
Trabajo presentado al RILEM TC-251-SRT "Sulfate Resistance Testing" on External Sulfate Attack (TESA 2018), celebrado del 24 al 25 de mayo de 2018 en el Instituto de Ciencias de la Construcción Eduardo Torroja (IETCC-CSIC), Madrid, España.The study presented the results about the sulfuric acid corrosion, at very low pH, of a concrete containing blast furnace slag and fly-ash as SCM. Since no standard method are present regarding the acid corrosion, the comparison of the results between different laboratories is strongly related to the experimental conditions. In this research two methods were compared based on the complete concrete immersion in a sulfuric acid solution with different approaches to keep the pH 2 constant. The evolution of damage was followed by the loss of mass (kg/m2); moreover, the microstructure was observed by electron-scanning microscopy and the elastic modulus was performed as non-destructive test (NDT). The rate of degradation after 35 days of exposure, according the loss of mass due to the calcium dissolution of cement paste, is comparable between the two methods. The influence on the experimental parameters and the relation with the combined sulphate and acidic attack is discussed.This work was financially supported by the European Union’s H2020 grant agreement ID 685445 under the LORCENIS Project (https://www.sintef.no/projectweb/lorcenis/)