93 research outputs found

    On the Conflicting Estimations of Pigment Site Energies in Photosynthetic Complexes: A Case Study of the CP47 Complex

    Get PDF
    Citation: Reinot, T., Chen, J. H., Kell, A., Jassas, M., Robben, K. C., Zazubovich, V., & Jankowiak, R. (2016). On the Conflicting Estimations of Pigment Site Energies in Photosynthetic Complexes: A Case Study of the CP47 Complex. Analytical Chemistry Insights, 11, 35-48. doi:10.4137/aci.s32151We focus on problems with elucidation of site energies (E-0(n)) for photosynthetic complexes (PSCs) in order to raise some genuine concern regarding the conflicting estimations propagating in the literature. As an example, we provide a stern assessment of the site energies extracted from fits to optical spectra of the widely studied CP47 antenna complex of photosystem II from spinach, though many general comments apply to other PSCs as well. Correct values of E-0(n) for chlorophyll (Chl) a in CP47 are essential for understanding its excitonic structure, population dynamics, and excitation energy pathway(s). To demonstrate this, we present a case study where simultaneous fits of multiple spectra (absorption, emission, circular dichroism, and nonresonant hole-burned spectra) show that several sets of parameters can fit the spectra very well. Importantly, we show that variable emission maxima (690-695 nm) and sample-dependent bleaching in nonresonant hole-burning spectra reported in literature could be explained, assuming that many previously studied CP47 samples were a mixture of intact and destabilized proteins. It appears that the destabilized subpopulation of CP47 complexes could feature a weakened hydrogen bond between the 13(1)-keto group of Chl29 and the PsbH protein subunit, though other possibilities cannot be entirely excluded, as discussed in this work. Possible implications of our findings are briefly discussed

    Spectral hole burning: examples from photosynthesis

    Get PDF
    The optical spectra of photosynthetic pigment–protein complexes usually show broad absorption bands, often consisting of a number of overlapping, ‘hidden’ bands belonging to different species. Spectral hole burning is an ideal technique to unravel the optical and dynamic properties of such hidden species. Here, the principles of spectral hole burning (HB) and the experimental set-up used in its continuous wave (CW) and time-resolved versions are described. Examples from photosynthesis studied with hole burning, obtained in our laboratory, are then presented. These examples have been classified into three groups according to the parameters that were measured: (1) hole widths as a function of temperature, (2) hole widths as a function of delay time and (3) hole depths as a function of wavelength. Two examples from light-harvesting (LH) 2 complexes of purple bacteria are given within the first group: (a) the determination of energy-transfer times from the chromophores in the B800 ring to the B850 ring, and (b) optical dephasing in the B850 absorption band. One example from photosystem II (PSII) sub-core complexes of higher plants is given within the second group: it shows that the size of the complex determines the amount of spectral diffusion measured. Within the third group, two examples from (green) plants and purple bacteria have been chosen for: (a) the identification of ‘traps’ for energy transfer in PSII sub-core complexes of green plants, and (b) the uncovering of the lowest k = 0 exciton-state distribution within the B850 band of LH2 complexes of purple bacteria. The results prove the potential of spectral hole burning measurements for getting quantitative insight into dynamic processes in photosynthetic systems at low temperature, in particular, when individual bands are hidden within broad absorption bands. Because of its high-resolution wavelength selectivity, HB is a technique that is complementary to ultrafast pump–probe methods. In this review, we have provided an extensive bibliography for the benefit of scientists who plan to make use of this valuable technique in their future research

    Effect of Mg2+ ions co-doping on luminescence and defects formation processes in Gd3(Ga,Al)5O12:Ce single crystals

    Get PDF
    The work was supported by the Institutional Research Funding IUT02-26 of the Estonian Ministry of Education and Research and the project 16-15569S of the Czech Science Foundation.Photo- and radioluminescence and thermally stimulated luminescence characteristics of Ce³⁺ - doped and Ce³⁺, Mg²⁺ co-doped Gd3(Ga,Al)5O12 (GAGG) single crystals of similar composition are investigated in the 9–500 K temperature range. The Ce³⁺ - related luminescence spectra and the photoluminescence decay kinetics in these crystals are found to be similar. Under photoexcitation in the Ce³⁺ - and Gd³⁺ - related absorption bands, no prominent rise of the photoluminescence intensity in time is observed neither in GAGG:Ce,Mg nor in GAGG:Ce crystals. The afterglow is strongly reduced in GAGG:Ce,Mg as compared to GAGG:Ce, and the afterglow decay kinetics is much faster. Co-doping with Mg²⁺ results in a drastic decrease of the thermally stimulated luminescence (TSL) intensity in the whole investigated temperature range and in the appearance of a new complex Mg²⁺ - related TSL glow curve peak around 285 K. After irradiation in the Ce³⁺ - related 3.6 eV absorption band, the TSL intensity in GAGG:Ce,Mg is found to be comparable with that in the GAGG:Ce epitaxial film of similar composition. The Mg²⁺ - induced changes in the concentration, origin and structure of the crystal lattice defects and their influence on the scintillation characteristics of GAGG:Ce,Mg are discussed.Estonian Ministry of Education and Research IUT02-26; Czech Science Foundation 16-15569S; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Bacteriochlorophyll a

    No full text
    corecore