42 research outputs found

    The importance of context: an exploration of factors influencing the adoption of student-centered teaching among chemistry, biology, and physics faculty

    Get PDF
    Background: Research at the secondary and postsecondary levels has clearly demonstrated the critical role that individual and contextual characteristics play in instructors’ decision to adopt educational innovations. Although recent research has shed light on factors influencing the teaching practices of science, technology, engineering, and mathematics (STEM) faculty, it is still not well understood how unique departmental environments impact faculty adoption of evidence-based instructional practices (EBIPs) within the context of a single institution. In this study, we sought to characterize the communication channels utilized by STEM faculty, as well as the contextual and individual factors that influence the teaching practices of STEM faculty at the departmental level. Accordingly, we collected survey and observational data from the chemistry, biology, and physics faculty at a single large research-intensive university in the USA. We then compared the influencing factors experienced by faculty in these different departments to their instructional practices. Results: Analyses of the survey data reveal disciplinary differences in the factors influencing adoption of EBIPs. In particular, the physics faculty (n = 15) had primarily student-centered views about teaching and experienced the most positive contextual factors toward adoption of EBIPs. At the other end of the spectrum, the chemistry faculty (n = 20) had primarily teacher-centered views and experienced contextual factors that hindered the adoption of student-centered practices. Biology faculty (n = 25) fell between these two groups. Classroom observational data reflected these differences: The physics classrooms were significantly more student-centered than the chemistry classrooms. Conclusions: This study demonstrates that disciplinary differences exist in the contextual factors teaching conceptions that STEM faculty experience and hold, even among faculty within the same institution. Moreover, it shows that these differences are associated to the level of adoption of student-centered teaching practices. This work has thus identified the critical need to carefully characterize STEM faculty’s departmental environment and conceptions about teaching before engaging in instructional reform efforts, and to adapt reform activities to account for these factors. The results of this study also caution the over generalization of findings from a study focused on one type of STEM faculty in one environment to all STEM faculty in any environment

    Fashion, the media and age: How women’s magazines use fashion to negotiate age identities

    Get PDF
    The article explores the role of women’s magazines in the negotiation of later life identities, focussing on the treatment of fashion and dress. It locates the analysis in debates about the changing nature of later years with the emergence of Third Age identities, and the role of consumption in these. Focussed on the treatment of fashion and age, it analyses four UK magazines: three chosen to represent the older market (Woman & Home, Saga, Yours), and one to represent mainstream fashion (Vogue). It is based on interviews with four editors and analysis of the content of the magazines. The article analyses the media strategies that journalists use to negotiate tensions in the presentation of fashion for this group and their role in supporting new formations of age

    The Arctic plant aboveground biomass synthesis dataset

    Get PDF
    Abstract Plant biomass is a fundamental ecosystem attribute that is sensitive to rapid climatic changes occurring in the Arctic. Nevertheless, measuring plant biomass in the Arctic is logistically challenging and resource intensive. Lack of accessible field data hinders efforts to understand the amount, composition, distribution, and changes in plant biomass in these northern ecosystems. Here, we present The Arctic plant aboveground biomass synthesis dataset, which includes field measurements of lichen, bryophyte, herb, shrub, and/or tree aboveground biomass (g m−2) on 2,327 sample plots from 636 field sites in seven countries. We created the synthesis dataset by assembling and harmonizing 32 individual datasets. Aboveground biomass was primarily quantified by harvesting sample plots during mid- to late-summer, though tree and often tall shrub biomass were quantified using surveys and allometric models. Each biomass measurement is associated with metadata including sample date, location, method, data source, and other information. This unique dataset can be leveraged to monitor, map, and model plant biomass across the rapidly warming Arctic

    Crystal structure of human filamin C domain 23 and small angle scattering model for filamin C 23-24 dimer.

    No full text
    Filamin C is a dimeric, actin-binding protein involved in organization of cortical cytoskeleton and of the sarcomere. We performed crystallographic, small-angle X-ray scattering and analytical ultracentrifugation experiments on the constructs containing carboxy-terminal domains of the protein (domains 23-24 and 19-21). The crystal structure of domain 23 of filamin C showed that the protein adopts the expected immunoglobulin (Ig)-like fold. Small-angle X-ray scattering experiments performed on filamin C tandem Ig-like domains 23 and 24 reveal a dimer that is formed by domain 24 and that domain 23 has little interactions with itself or with domain 24, while the analytical ultracentrifugation experiments showed that the filamin C domains 19-21 form elongated monomers in diluted solutions
    corecore