514 research outputs found

    Observation of Stochastic Resonance in Percolative Josephson Media

    Get PDF
    Measurements of the electrical response of granular Sn-Ge thin films below the superconducting transition temperature are reported. The addition of an external noise to the magnetic field applied to the sample is found to increase the sample voltage response to a small externally applied ac signal. The gain coefficient for this signal and the signal-to-noise ratio display clear maxima at particular noise levels. We interpret these observations as a stochastic resonance in the percolative Josephson media which occurs close to the percolation threshold.Comment: 4 pages, 5 figure

    A Cascade Neural Network Architecture investigating Surface Plasmon Polaritons propagation for thin metals in OpenMP

    Full text link
    Surface plasmon polaritons (SPPs) confined along metal-dielectric interface have attracted a relevant interest in the area of ultracompact photonic circuits, photovoltaic devices and other applications due to their strong field confinement and enhancement. This paper investigates a novel cascade neural network (NN) architecture to find the dependance of metal thickness on the SPP propagation. Additionally, a novel training procedure for the proposed cascade NN has been developed using an OpenMP-based framework, thus greatly reducing training time. The performed experiments confirm the effectiveness of the proposed NN architecture for the problem at hand

    GRAIL, an omni-directional gravitational wave detector

    Get PDF
    A cryogenic spherical and omni-directional resonant-mass detector proposed by the GRAIL collaboration is described.Comment: 5 pages, 4 figs., contribution to proceedings GW Data Analysis Workshop, Paris, nov. 199

    Don’t forget the vertical dimension: Assessment of distributional dynamics of cave-dwelling invertebrates in both ground and parietal microhabitats

    Get PDF
    Biological studies on factors shaping underground communities are poor, especially those considering simultaneously organisms with different degrees of adaptation to cave life. In this study, we assessed the annual dynamics and use of both horizontal and vertical microhabitats of a whole community with the aim of understanding whether cave-dwelling organisms have a similar distribution among vertical and ground-level microhabitats and to find out which microhabitat features influence such distribution. We monthly assessed from 2017 to 2018, by direct observation combined with quadrat sampling method on the ground and transects on the walls, richness and abundance of 62 cave-dwelling species in a cave of Northern Italy. Environmental factors such as light intensity, temperature, relative humidity and mineralogical composition of the substrates were measured during each monitoring session, influencing the dynamics of the whole community and revealing significant differences between ground and wall microhabitats. A gradient of variation of the species assemblages occurred from the entrance toward inner areas, however, evidence that the dynamics of the walls are very different from those occurring at the ground independent from the distance from the surface are shown. Biodiversity indices highlighted sampling area diversity and a discrete total cave fauna biodiversity with the highest values found near the entrance and the lowest in the inner part of the cave

    Holocene evolution of halite caves in the Cordillera de la Sal (Central Atacama, Chile) in different climate conditions

    Get PDF
    Geomorphological studies have been carried out in rapidly evolving salt caves related to small watersheds in the San Pedro de Atacama area, Chile. Radiocarbon ages of bones and wood from cave deposits, combined with the presence of large salt caves, geomorphological and sedimentological observations, and the results of micrometer measurements outside and in some of the caves, suggest a period of speleogenesis in the Cordillera de la Sal during the onset of the Holocene, during which the large halite cave systems developed, followed by an early Holocene hyperarid period.Most smaller caves (i.e. Lechuza del Campanario) most probably formed at the start of the wetter mid-Holocene period (5–4.4 ka), when precipitation was never intense enough to entrain large amounts of sediments, but enough to trigger cave development. A diamicton in Lechuza del Campanario Cave radiocarbon dated at ca. 4.4 ka shows that at least one high intensity rainfall event occurred in this recharge basin during the mid-Holocene wet interval. A wet period with lower intensity rainfall events followed between 4.0 and 2.5 ka, causing the 4.4 kyrs old diamicton in Lechuza del Campanario Cave to be entrenched, and the alluvial fan at the downstream end of Palacio del Sal Cave to be covered with windborne sediments dated by OSL at around 3.6 ka. At ca. 2 ka there was a high-intensity rainfall event documented by the age of a twig stuck in the ceiling of the Palacio del Sal Cave, followed by a period with lower intensity rain events until ca. 1.3 ka, when another intense flood produced a mudflow that deposited a second diamicton in Lechuza del Campanario Cave. From then on clustering of radiocarbon ages forwood and bone recovered fromcaves indicates increased rainfall intensity in the period ca. 0.9–0.5 ka, followed by no registered events until a minor flood at ca. 0.13 ka. The fourcenturies long wetter time interval (0.9–0.5 ka), corresponding to the Medieval Climate Anomaly, has been an archeologically important period in the Atacama Desert (Tiwanaku culture). The observations and a detailed review of paleoclimate literature from this key area have allowed the development of a landscape evolution model related to changing climate conditions during the Late Holocene

    Decompressive laparotomy for abdominal compartment syndrome

    Get PDF
    Background: The effect of decompressive laparotomy on outcomes in patients with abdominal compartment syndrome has been poorly investigated. The aim of this prospective cohort study was to describe the effect of decompressive laparotomy for abdominal compartment syndrome on organ function and outcomes. Methods: This was a prospective cohort study in adult patients who underwent decompressive laparotomy for abdominal compartment syndrome. The primary endpoints were 28-day and 1-year all-cause mortality. Changes in intra-abdominal pressure (IAP) and organ function, and laparotomy-related morbidity were secondary endpoints. Results: Thirty-three patients were included in the study (20 men). Twenty-seven patients were surgical admissions treated for abdominal conditions. The median (i.q.r.) Acute Physiology And Chronic Health Evaluation (APACHE) II score was 26 (20-32). Median IAP was 23 (21-27) mmHg before decompressive laparotomy, decreasing to 12 (9-15), 13 (8-17), 12 (9-15) and 12 (9-14) mmHg after 2, 6, 24 and 72 h. Decompressive laparotomy significantly improved oxygenation and urinary output. Survivors showed improvement in organ function scores, but non-survivors did not. Fourteen complications related to the procedure developed in eight of the 33 patients. The abdomen could be closed primarily in 18 patients. The overall 28-day mortality rate was 36 per cent (12 of 33), which increased to 55 per cent (18 patients) at 1 year. Non-survivors were no different from survivors, except that they tended to be older and on mechanical ventilation. Conclusion: Decompressive laparotomy reduced IAP and had an immediate effect on organ function. It should be considered in patients with abdominal compartment syndrome

    Microbial Community Characterizing Vermiculations from Karst Caves and Its Role in Their Formation

    Get PDF
    The microbiota associated with vermiculations from karst caves is largely unknown. Vermiculations are enigmatic deposits forming worm-like patterns on cave walls all over the world. They represent a precious focus for geomicrobiological studies aimed at exploring both the microbial life of these ecosystems and the vermiculation genesis. This study comprises the first approach on the microbial communities thriving in Pertosa-Auletta Cave (southern Italy) vermiculations by next-generation sequencing. The most abundant phylum in vermiculations was Proteobacteria, followed by Acidobacteria > Actinobacteria > Nitrospirae > Firmicutes > Planctomycetes > Chloroflexi > Gemmatimonadetes > Bacteroidetes > Latescibacteria. Numerous less-represented taxonomic groups (< 1%), as well as unclassified ones, were also detected. From an ecological point of view, all the groups co-participate in the biogeochemical cycles in these underground environments, mediating oxidation-reduction reactions, promoting host rock dissolution and secondary mineral precipitation, and enriching the matrix in organic matter. Confocal laser scanning microscopy and field emission scanning electron microscopy brought evidence of a strong interaction between the biotic community and the abiotic matrix, supporting the role of microbial communities in the formation process of vermiculations

    Morpho-Mineralogical and Bio-Geochemical Description of Cave Manganese Stromatolite-Like Patinas (Grotta del Cervo, Central Italy) and Hints on Their Paleohydrological-Driven Genesis

    Get PDF
    Caves are dark subsurface environments with relatively constant temperatures that allow studying bio-mineralization processes and paleoenvironmental or climate changes in optimal conditions. In the extreme and oligotrophic cave environment, manganese patinas having stromatolite-like features are uncommon. Here we provide the first detailed mineralogical, geochemical, and microbiological investigation of fine-grained and poorly crystalline MnFe stromatolite-like wall patinas formed in a deep-cave environment in Italy. These mineralizations, about 3 mm thick, consist of an alternation of Mn-layers and Fe-lenses. We show that the microbial communities' composition is dominated by Mn-oxidizing bacteria, such as Bacillus, Flavobacterium, and Pseudomonas. Our multidisciplinary investigation, integrating data from different analytical techniques (i.e., optical microscopy, SEM-EDS, μXRF, XRPD, FT-IR, Raman spectroscopy, and DNA sequencing), revealed peculiar chemical, mineralogical, and biological features: 1) A cyclical oscillation of Mn and Fe along the growth of the patinas. We propose that this oscillation represents the shift between oxic and suboxic conditions related to different phases occurring during paleo-flood events; 2) A typical spatial distribution of mineralogy and oxidation state of Mn, bacterial imprints, detrital content, and stromatolite-like morphologies along the Mn-layers. We propose that this distribution is controlled by the local hydraulic regime of the paleo-floods, which, in turn, is directly related to the morphology of the wall surface. Under less turbulent conditions, the combination of clay mineral catalysis and biological oxidation produced vernadite, a poor-crystalline phyllomanganate with a low average oxidation state of Mn, and branched columnar stromatolite-like morphologies. On the other hand, under more turbulent conditions, the sedimentation of clay minerals and microbial communities' development are both inhibited. In this local environment, a lower oxidation rate of Mn2+ favored the formation of todorokite and/or ranciéite, two compounds with a high average oxidation state of Mn, and flat-laminated or columnar stromatolite-like morphologies
    corecore